Water deficit during male meiosis in wheat (Triticum aestivum L.) causes pollen sterility. With a view to identifying the internal trigger for this failure, it was found that water stress specifically impairs the activities of vacuolar and cell-wall invertases in anthers prior to the arrest of pollen development. The enzymes are affected only when water deficit occurs around meiosis. Three invertase cDNAs, two encoding the cell-wall (Ivr1, Ivr3) and one the vacuolar (Ivr5) isoform, were isolated from an anther cDNA library. RNA gel-blot analysis using floral organs of well-watered plants revealed that these genes were expressed preferentially, though not exclusively, in anthers. Semi-quantitative RT-PCR demonstrated that transitory water deficit during meiosis selectively down-regulated the transcription of two of the three genes, one encoding the vacuolar (Ivr5) and the other a cell-wall (Ivr1) isoform, without affecting the Ivr3 message. Their expression did not recover upon resumption of watering. Another homologue of Ivr1 was also down-regulated, but only during the post-stress period. The stress effects on invertase transcripts were consistent with those on the developmental profiles of the corresponding enzyme activities. In situ hybridization revealed that the stress-sensitive invertase genes, unlike an insensitive one, were expressed within the micro-spores. No evidence for an invertase inhibitor under stress was found. Together the results show that the decline in invertase activity is probably regulated primarily at the transcriptional level in a gene- and cell-specific manner.