Transition to phase synchronization of chaos

被引:222
作者
Rosa, E [1 ]
Ott, E
Hess, MH
机构
[1] Univ Maryland, Inst Plasma Res, College Pk, MD 20742 USA
[2] Univ Fed Parana, Dept Fis, BR-80060000 Curitiba, Parana, Brazil
关键词
D O I
10.1103/PhysRevLett.80.1642
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase synchronization of chaos is studied using a modified Rossler system. By employing a!ift of the phase variable (i.e., phase points separated by 2 pi are not considered as the same), the transition to phase synchronization is viewed as a boundary crisis mediated by an unstable-unstable pair bifurcation on a branched manifold, and the accompanying basin boundary structure is found to be of a new type.
引用
收藏
页码:1642 / 1645
页数:4
相关论文
共 22 条
[1]   ROBUSTNESS AND SIGNAL RECOVERY IN A SYNCHRONIZED CHAOTIC SYSTEM [J].
Cuomo, Kevin M. ;
Oppenheim, Alan V. ;
Strogatz, Steven H. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1629-1638
[2]   ENHANCING SYNCHRONISM OF CHAOTIC SYSTEMS [J].
DING, MZ ;
OTT, E .
PHYSICAL REVIEW E, 1994, 49 (02) :R945-R948
[3]   Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization [J].
Gauthier, DJ ;
Bienfang, JC .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1751-1754
[4]  
GREBOGI C, 1985, ERGOD THEOR DYN SYST, V5, P341
[5]   FINAL-STATE SENSITIVITY - AN OBSTRUCTION TO PREDICTABILITY [J].
GREBOGI, C ;
MCDONALD, SW ;
OTT, E ;
YORKE, JA .
PHYSICS LETTERS A, 1983, 99 (09) :415-418
[6]   FRACTAL BASIN BOUNDARIES, LONG-LIVED CHAOTIC TRANSIENTS, AND UNSTABLE-UNSTABLE PAIR BIFURCATION [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 50 (13) :935-938
[7]   CHAOTIC ATTRACTORS IN CRISIS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1507-1510
[8]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[9]   EXPERIMENTAL CONTROL OF CHAOS FOR COMMUNICATION [J].
HAYES, S ;
GREBOGI, C ;
OTT, E ;
MARK, A .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1781-1784
[10]   FRACTAL BASIN BOUNDARIES [J].
MCDONALD, SW ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1985, 17 (02) :125-153