Constitutive and interleukin-1-inducible phosphorylation of p65 NF-κB at serine 536 is mediated by multiple protein kinases including IκB kinase (IKK)-α, IKKβ, IKKε, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription

被引:313
作者
Buss, H
Dörrie, A
Schmitz, ML
Hoffmann, E
Resch, K
Kracht, M
机构
[1] Hannover Med Sch, Inst Pharmacol, D-30625 Hannover, Germany
[2] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
关键词
D O I
10.1074/jbc.M409825200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphorylation of NF-kappaB p65(RelA) serine 536 is physiologically induced in response to a variety of proinflammatory stimuli, but the responsible pathways have not been conclusively unraveled, and the function of this phosphorylation is largely elusive. In contrast to previous studies, we found no evidence for a role of c-Jun N-terminal kinase, p38 kinase, extracellular signal-regulated kinase, or phosphatidylinositol 3-kinase in interleukin-1- or tumor necrosis factor-induced Ser-536 phosphorylation, as revealed by pharmacological inhibitors. We were not able to suppress Ser-536 phosphorylation by either RNA interference directed at IkappaB kinase (IKK)-alpha/beta (the best characterized Ser-536 kinases so far) or the IKKbeta inhibitor SC-514 or dominant negative mutants of either IKK. A green fluorescent protein p65 fusion protein was phosphorylated at Ser-536 in the absence of IKK activation, suggesting the existence of IKKalpha/beta-independent Ser-536 kinases. Chromatographic fractionation of cell extracts allowed the identification of two distinct enzymatic activities phosphorylating Ser-536. Peak 1 represents an unknown kinase, whereas peak 2 contained IKKalpha, IKKbeta, IKKepsilon, and TBK1. Overexpressed IKKepsilon and TBK1 phosphorylate Ser-536 in vivo and in vitro. Reconstitution of mutant p65 proteins in p65-deficient fibroblasts that either mimicked phosphorylation (S536D) or preserved a predicted hydrogen bond between Ser-536 and Asp-533 (S536N) revealed that phosphorylation of Ser-536 favors interleukin-8 transcription mediated by TATA-binding protein-associated factor II31, a component of TFIID. In the absence of phosphorylation, the hydrogen bond favors binding of the corepressor amino-terminal enhancer of split to the p65 terminal transactivation domain. Collectively, our results provide evidence for at least five kinases that converge on Ser-536 of p65 and a novel function for this phosphorylation site in the recruitment of components of the basal transcriptional machinery to the interleukin-8 promoter.
引用
收藏
页码:55633 / 55643
页数:11
相关论文
共 56 条
  • [21] A selective IKK-2 inhibitor blocks NF-κB-dependent gene expression in interleukin-1β-stimulated synovial fibroblasts
    Kishore, N
    Sommers, C
    Mathialagan, S
    Guzova, J
    Yao, M
    Hauser, S
    Huynh, K
    Bonar, S
    Mielke, C
    Albee, L
    Weier, R
    Graneto, M
    Hanau, C
    Perry, T
    Tripp, CS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (35) : 32861 - 32871
  • [22] INTERLEUKIN-1 ACTIVATES A NOVEL PROTEIN-KINASE THAT PHOSPHORYLATES THE EPIDERMAL-GROWTH-FACTOR RECEPTOR PEPTIDE T669
    KRACHT, M
    SHIROO, M
    MARSHALL, CJ
    HSUAN, JJ
    SAKLATVALA, J
    [J]. BIOCHEMICAL JOURNAL, 1994, 302 : 897 - 905
  • [23] IKKi/IKKε plays a key role in integrating signals induced by pro-inflammatory stimuli
    Kravchenko, VV
    Mathison, JC
    Schwamborn, K
    Mercurio, F
    Ulevitch, RJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (29) : 26612 - 26619
  • [24] Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
    Kussie, PH
    Gorina, S
    Marechal, V
    Elenbaas, B
    Moreau, J
    Levine, AJ
    Pavletich, NP
    [J]. SCIENCE, 1996, 274 (5289) : 948 - 953
  • [25] Targeted disruption of the ζPKC gene results in the impairment of the NF-κB pathway
    Leitges, M
    Sanz, L
    Martin, P
    Duran, A
    Braun, U
    García, JF
    Camacho, F
    Diaz-Meco, MT
    Rennert, PD
    Moscat, J
    [J]. MOLECULAR CELL, 2001, 8 (04) : 771 - 780
  • [26] NF-κB regulation in the immune system
    Li, QT
    Verma, IM
    [J]. NATURE REVIEWS IMMUNOLOGY, 2002, 2 (10) : 725 - 734
  • [27] Severe liver degeneration in mice lacking the IκB kinase 2 gene
    Li, QT
    Van Antwerp, D
    Mercurio, F
    Lee, KF
    Verma, IM
    [J]. SCIENCE, 1999, 284 (5412) : 321 - 325
  • [28] Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-κB
    Madrid, LV
    Wang, CY
    Guttridge, DC
    Schottelius, AJG
    Baldwin, AS
    Mayo, MW
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (05) : 1626 - 1638
  • [29] Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38
    Madrid, LV
    Mayo, MW
    Reuther, JY
    Baldwin, AS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (22) : 18934 - 18940
  • [30] Comparative analysis of T-cell costimulation and CD43 activation reveals novel signaling pathways and target genes
    Mattioli, I
    Dittrich-Breiholz, O
    Livingstone, M
    Kracht, M
    Schmitz, ML
    [J]. BLOOD, 2004, 104 (10) : 3302 - 3304