Constructing levels in arrangements and higher order Voronoi diagrams

被引:70
作者
Agarwal, PK
de Berg, M
Matousek, J
Schwarzkopf, O
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Univ Utrecht, Vakgroep Informat, NL-3508 TB Utrecht, Netherlands
[3] Charles Univ Prague, Dept Appl Math, Prague 11800 1, Czech Republic
[4] Univ Utrecht, Dept Comp Sci, NL-3508 TB Utrecht, Netherlands
关键词
arrangements; random sampling; Voronoi diagrams;
D O I
10.1137/S0097539795281840
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give simple randomized incremental algorithms for computing the less than or equal to k-level in an arrangement of n lines in the plane or in an arrangement of n planes in R-3. The expected running time of our algorithms is O(nk + n alpha(n)logn) for the planar case and O(nk(2) + nlog(3)n) for the three-dimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes to computing the less than or equal to k-level in an arrangement of discs or x-monotone Jordan curves in the plane. Our approach can also compute the k-level; this yields a randomized algorithm for computing the order-k Voronoi diagram of n points in the plane in expected time O(k(n - k) logn + nlog(3)n).
引用
收藏
页码:654 / 667
页数:14
相关论文
共 31 条
[1]  
Agarwal P. K., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P30, DOI 10.1145/262839.262856
[2]   Computing many faces in arrangements of lines and segments [J].
Agarwal, PK ;
Matousek, J ;
Schwarzkopf, O .
SIAM JOURNAL ON COMPUTING, 1998, 27 (02) :491-505
[3]   SHARP UPPER AND LOWER BOUNDS ON THE LENGTH OF GENERAL DAVENPORT-SCHINZEL SEQUENCES [J].
AGARWAL, PK ;
SHARIR, M ;
SHOR, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 52 (02) :228-274
[4]  
Alon N., 1992, COMB PROBAB COMPUT, V1, P189, DOI DOI 10.1017/S0963548300000225
[5]  
[Anonymous], 1993, COMPUTATIONAL GEOMET
[6]   A SIMPLE ON-LINE RANDOMIZED INCREMENTAL ALGORITHM FOR COMPUTING HIGHER ORDER VORONOI DIAGRAMS [J].
Aurenhammer, Franz ;
Schwarzkopf, Otfried .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (04) :363-381
[7]   A SEMIDYNAMIC CONSTRUCTION OF HIGHER-ORDER VORONOI DIAGRAMS AND ITS RANDOMIZED ANALYSIS [J].
BOISSONNAT, JD ;
DEVILLERS, O ;
TEILLAUD, M .
ALGORITHMICA, 1993, 9 (04) :329-356
[8]   AN IMPROVED ALGORITHM FOR CONSTRUCTING KTH-ORDER VORONOI DIAGRAMS [J].
CHAZELLE, B ;
EDELSBRUNNER, H .
IEEE TRANSACTIONS ON COMPUTERS, 1987, 36 (11) :1349-1354
[9]   A DETERMINISTIC VIEW OF RANDOM SAMPLING AND ITS USE IN GEOMETRY [J].
CHAZELLE, B ;
FRIEDMAN, J .
COMBINATORICA, 1990, 10 (03) :229-249
[10]   CUTTING HYPERPLANES FOR DIVIDE-AND-CONQUER [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (02) :145-158