Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus

被引:334
作者
Herrewegh, AAPM [1 ]
Smeenk, I [1 ]
Horzinek, MC [1 ]
Rottier, PJM [1 ]
de Groot, RJ [1 ]
机构
[1] Univ Utrecht, Dept Immunol & Infect Dis, Virol Unit, Fac Vet Med, NL-3508 TD Utrecht, Netherlands
关键词
D O I
10.1128/JVI.72.5.4508-4514.1998
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to recombinant viruses which encode a CCV-like S protein and the M, N, 7a, and 7b proteins of FCoV type I (K. Motowaka, T. Hohdatsu, H. Hashimoto, and H. Koyama, Microbiol. Immunol. 40:425-433, 1996; H. Vennema, A. Poland, K. Floyd Hawkins, and N. C. Pedersen, Feline Pract. 23:40-44, 1995). In the present study, we have looked for additional FCoV-CCV recombination sites. Four regions in the pol gene were selected for comparative sequence analysis of the type II FCoV strains 79-1683 and 79-1146, the type I FCoV strains TN406 and UCD1, the CCV strain K378, and the TGEV strain Purdue. Our data show that the type II FCoVs have arisen from double recombination events: additional crossover sites were mapped in the ORF1ab frameshifting region of strain 79-1683 and in the 5' half of ORF1b of strain 79-1146.
引用
收藏
页码:4508 / 4514
页数:7
相关论文
共 50 条
[11]  
Groot R. J. de, 1995, The coronaviridae., P293
[12]   ANTIGENICITY OF MOUSE HEPATITIS-VIRUS STRAIN 3 SUB-COMPONENTS IN C57 STRAIN MICE [J].
HASONY, HJ ;
MACNAUGHTON, MR .
ARCHIVES OF VIROLOGY, 1981, 69 (01) :33-41
[13]   NUCLEOTIDE-SEQUENCE OF THE HUMAN CORONAVIRUS 229E RNA-POLYMERASE LOCUS [J].
HEROLD, J ;
RAABE, T ;
SCHELLEPRINZ, B ;
SIDDELL, SG .
VIROLOGY, 1993, 195 (02) :680-691
[14]  
HERREWEGH AAP, 1997, Y13921 EMBL
[15]   Persistence and evolution of feline coronavirus in a closed cat-breeding colony [J].
Herrewegh, AAPM ;
Mahler, M ;
Hedrich, HJ ;
Haagmans, BL ;
Egberink, HF ;
Horzinek, MC ;
Rottier, PJM ;
deGroot, RJ .
VIROLOGY, 1997, 234 (02) :349-363
[16]   THE MOLECULAR-GENETICS OF FELINE CORONAVIRUSES - COMPARATIVE SEQUENCE-ANALYSIS OF THE ORF7A/7B TRANSCRIPTION UNIT OF DIFFERENT BIOTYPES [J].
HERREWEGH, AAPM ;
VENNEMA, H ;
HORZINEK, MC ;
ROTTIER, PJM ;
DEGROOT, RJ .
VIROLOGY, 1995, 212 (02) :622-631
[17]  
HIGGINS DG, 1989, COMPUT APPL BIOSCI, V5, P151
[18]   THE PREVALENCE OF TYPE-I AND TYPE-II FELINE CORONAVIRUS INFECTIONS IN CATS [J].
HOHDATSU, T ;
OKADA, S ;
ISHIZUKA, Y ;
YAMADA, H ;
KOYAMA, H .
JOURNAL OF VETERINARY MEDICAL SCIENCE, 1992, 54 (03) :557-562
[19]   CHARACTERIZATION OF MONOCLONAL-ANTIBODIES AGAINST FELINE INFECTIOUS PERITONITIS VIRUS TYPE-II AND ANTIGENIC RELATIONSHIP BETWEEN FELINE, PORCINE, AND CANINE CORONAVIRUSES [J].
HOHDATSU, T ;
OKADA, S ;
KOYAMA, H .
ARCHIVES OF VIROLOGY, 1991, 117 (1-2) :85-95
[20]   ANTIGENIC ANALYSIS OF FELINE CORONAVIRUSES WITH MONOCLONAL-ANTIBODIES (MABS) - PREPARATION OF MABS WHICH DISCRIMINATE BETWEEN FIPV STRAIN-79-1146 AND FECV STRAIN-79-1683 [J].
HOHDATSU, T ;
SASAMOTO, T ;
OKADA, S ;
KOYAMA, H .
VETERINARY MICROBIOLOGY, 1991, 28 (01) :13-24