A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration

被引:84
作者
Wei, SQ [1 ]
Mizuuchi, K [1 ]
Craigie, R [1 ]
机构
[1] NIDDKD, Mol Biol Lab, NIH, Bethesda, MD 20892 USA
关键词
DNA transposition; footprinting; PCR; pre-integration complexes; retrovirus;
D O I
10.1093/emboj/16.24.7511
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have probed the nucleoprotein organization of Moloney murine leukemia virus (MLV) pre-integration complexes using a novel footprinting technique that utilizes a simplified in vitro phage Mu transposition system, We find that several hundred base pairs at each end of the viral DNA are organized in a large nucleoprotein complex, which we call the intasome, This structure is not-formed when pre-integration complexes are made by infecting cells with integrase-minus virus, demonstrating a requirement for integrase. In contrast, footprinting of internal regions of the viral DNA did not reveal significant differences between pre-integration complexes with and without integrase. Treatment with high salt disrupts the intasome in parallel with loss of intermolecular integration activity. We show that a cellular factor is required for reconstitution of the intasome. Finally, we demonstrate that DNA-protein interactions involving extensive regions at the ends of the viral DNA are functionally important for retroviral DNA integration activity, Current in vitro integration systems utilizing purified integrase lack the full fidelity of the in vivo reaction, Our results indicate that both host factors and long viral DNA substrates may be required to reconstitute an in vitro system with all the hallmarks of DNA integration in vivo.
引用
收藏
页码:7511 / 7520
页数:10
相关论文
共 46 条
[1]   Concerted integration of linear retroviral DNA by the avian sarcoma virus integrase in vitro: Dependence on both long terminal repeat termini [J].
Aiyar, A ;
Hindmarsh, P ;
Skalka, AM ;
Leis, J .
JOURNAL OF VIROLOGY, 1996, 70 (06) :3571-3580
[2]   Retroviral integrase, putting the pieces together [J].
Andrake, MD ;
Skalka, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (33) :19633-19636
[3]   DIVISION-OF-LABOR AMONG MONOMERS WITHIN THE MU-TRANSPOSASE TETRAMER [J].
BAKER, TA ;
MIZUUCHI, M ;
SAVILAHTI, H ;
MIZUUCHI, K .
CELL, 1993, 74 (04) :723-733
[4]   A NUCLEOPROTEIN COMPLEX MEDIATES THE INTEGRATION OF RETROVIRAL DNA [J].
BOWERMAN, B ;
BROWN, PO ;
BISHOP, JM ;
VARMUS, HE .
GENES & DEVELOPMENT, 1989, 3 (04) :469-478
[5]   RETROVIRAL INTEGRATION - STRUCTURE OF THE INITIAL COVALENT PRODUCT AND ITS PRECURSOR, AND A ROLE FOR THE VIRAL IN PROTEIN [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2525-2529
[6]   CORRECT INTEGRATION OF RETROVIRAL DNA INVITRO [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
CELL, 1987, 49 (03) :347-356
[7]   HIGH-RESOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF AVIAN-SARCOMA VIRUS INTEGRASE [J].
BUJACZ, G ;
JASKOLSKI, M ;
ALEXANDRATOS, J ;
WLODAWER, A ;
MERKEL, G ;
KATZ, RA ;
SKALKA, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (02) :333-346
[8]  
BURKE CJ, 1992, J BIOL CHEM, V267, P9639
[9]   RETROVIRAL DNA INTEGRATION DIRECTED BY HIV INTEGRATION PROTEIN INVITRO [J].
BUSHMAN, FD ;
FUJIWARA, T ;
CRAIGIE, R .
SCIENCE, 1990, 249 (4976) :1555-1558
[10]   Solution structure of the N-terminal zinc binding domain of HIV-1 integrase [J].
Cai, ML ;
Zheng, RL ;
Caffrey, M ;
Craigie, R ;
Clore, GM ;
Gronenborn, AM .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :567-577