HIGH-RESOLUTION STRUCTURE OF THE CATALYTIC DOMAIN OF AVIAN-SARCOMA VIRUS INTEGRASE

被引:185
作者
BUJACZ, G
JASKOLSKI, M
ALEXANDRATOS, J
WLODAWER, A
MERKEL, G
KATZ, RA
SKALKA, AM
机构
[1] NCI, FREDERICK CANC RES & DEV CTR, ABL BASIC RES PROGRAM, MACROMOLEC STRUCT LAB, FREDERICK, MD 21702 USA
[2] POLISH ACAD SCI, INST BIOORGAN CHEM, CTR BIOCRYSTALLOG RES, POZNAN, POLAND
[3] FOX CHASE CANC CTR, INST CANC RES, PHILADELPHIA, PA 19110 USA
关键词
INTEGRASE; AIDS; X-RAY STRUCTURE; MULTIWAVELENGTH ANOMALOUS DIFFRACTION; STRUCTURE COMPARISON;
D O I
10.1006/jmbi.1995.0556
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Retroviral integrase (IN) functions to insert retroviral DNA into the host cell chromosome in a highly coordinated manner. IN catalyzes two biochemically separable reactions: processing of the viral DNA ends and joining of these ends to the host DNA. Previous studies suggested that these two reactions are chemically similar and are carried out by a single active site that is characterized by a highly conserved constellation of carboxylate residues, the D,D(35)E motif. We report here the crystal structure of the isolated catalytic domain of avian sarcoma virus (ASV) IN, solved using multiwavelength anomalous diffraction data for a selenomethionine derivative and refined at 1.7 Angstrom resolution. The protein is a crystallographic dimer with each monomer featuring a five-stranded mixed beta-sheet region surrounded by five alpha-helices. Based on the general fold and the arrangement of catalytic carboxylate residues, it is apparent that ASV IN is a member of a superfamily of proteins that also includes two types of nucleases, RuvC and RNase H. The general fold and the dimer interface are similar to those of the analogous domain of HIV-1 IN, whose crystal structure has been determined at 2.5 Angstrom resolution. However, the ASV IN structure is more complete in that all three critical carboxylic acids, Asp64, Asp121 and Glu157, are ordered. The ordered active site and the considerably higher resolution of the present structure are all important to an understanding of the mechanism of retroviral DNA integration, as well as for designing antiviral agents that may be effective against HIV.
引用
收藏
页码:333 / 346
页数:14
相关论文
共 49 条
[1]   ATOMIC-STRUCTURE OF THE RUVC RESOLVASE - A HOLLIDAY JUNCTION-SPECIFIC ENDONUCLEASE FROM ESCHERICHIA-COLI [J].
ARIYOSHI, M ;
VASSYLYEV, DG ;
IWASAKI, H ;
NAKAMURA, H ;
SHINAGAWA, H ;
MORIKAWA, K .
CELL, 1994, 78 (06) :1063-1072
[2]  
Brunger A. T., 1992, X PLOR SYSTEM XRAY C
[3]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[4]   ROUS-SARCOMA VIRUS INTEGRASE PROTEIN - MAPPING FUNCTIONS FOR CATALYSIS AND SUBSTRATE-BINDING [J].
BUSHMAN, FD ;
WANG, BB .
JOURNAL OF VIROLOGY, 1994, 68 (04) :2215-2223
[5]   REVERSAL OF INTEGRATION AND DNA SPLICING MEDIATED BY INTEGRASE OF HUMAN-IMMUNODEFICIENCY-VIRUS [J].
CHOW, SA ;
VINCENT, KA ;
ELLISON, V ;
BROWN, PO .
SCIENCE, 1992, 255 (5045) :723-726
[6]   THE IN PROTEIN OF MOLONEY MURINE LEUKEMIA-VIRUS PROCESSES THE VIRAL-DNA ENDS AND ACCOMPLISHES THEIR INTEGRATION INVITRO [J].
CRAIGIE, R ;
FUJIWARA, T ;
BUSHMAN, F .
CELL, 1990, 62 (04) :829-837
[7]   CRYSTAL-STRUCTURE OF THE RIBONUCLEASE-H DOMAIN OF HIV-1 REVERSE-TRANSCRIPTASE [J].
DAVIES, JF ;
HOSTOMSKA, Z ;
HOSTOMSKY, Z ;
JORDAN, SR ;
MATTHEWS, DA .
SCIENCE, 1991, 252 (5002) :88-95
[8]   STRUCTURE SOLUTION BY MINIMAL-FUNCTION PHASE REFINEMENT AND FOURIER FILTERING .1. THEORETICAL BASIS [J].
DETITTA, GT ;
WEEKS, CM ;
THUMAN, P ;
MILLER, R ;
HAUPTMAN, HA .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1994, 50 :203-210
[9]   CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HIV-1 INTEGRASE - SIMILARITY TO OTHER POLYNUCLEOTIDYL TRANSFERASES [J].
DYDA, F ;
HICKMAN, AB ;
JENKINS, TM ;
ENGELMAN, A ;
CRAIGIE, R ;
DAVIES, DR .
SCIENCE, 1994, 266 (5193) :1981-1986
[10]   IDENTIFICATION OF DISCRETE FUNCTIONAL DOMAINS OF HIV-1 INTEGRASE AND THEIR ORGANIZATION WITHIN AN ACTIVE MULTIMERIC COMPLEX [J].
ENGELMAN, A ;
BUSHMAN, FD ;
CRAIGIE, R .
EMBO JOURNAL, 1993, 12 (08) :3269-3275