Small-sample precision of ROC-related estimates

被引:238
作者
Hanczar, Blaise [2 ]
Hua, Jianping [1 ]
Sima, Chao [1 ]
Weinstein, John [3 ]
Bittner, Michael [1 ]
Dougherty, Edward R. [1 ,3 ,4 ]
机构
[1] Translat Genom Res Inst, Computat Biol Div, Phoenix, AZ USA
[2] Univ Paris 05, LIPADE, Paris, France
[3] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
[4] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX USA
基金
美国国家科学基金会;
关键词
GENE-EXPRESSION SIGNATURE; CLASSIFICATION; PERFORMANCE;
D O I
10.1093/bioinformatics/btq037
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The receiver operator characteristic (ROC) curves are commonly used in biomedical applications to judge the performance of a discriminant across varying decision thresholds. The estimated ROC curve depends on the true positive rate (TPR) and false positive rate (FPR), with the key metric being the area under the curve (AUC). With small samples these rates need to be estimated from the training data, so a natural question arises: How well do the estimates of the AUC, TPR and FPR compare with the true metrics? Results: Through a simulation study using data models and analysis of real microarray data, we show that (i) for small samples the root mean square differences of the estimated and true metrics are considerable; (ii) even for large samples, there is only weak correlation between the true and estimated metrics; and (iii) generally, there is weak regression of the true metric on the estimated metric. For classification rules, we consider linear discriminant analysis, linear support vector machine (SVM) and radial basis function SVM. For error estimation, we consider resubstitution, three kinds of crossvalidation and bootstrap. Using resampling, we show the unreliability of some published ROC results.
引用
收藏
页码:822 / 830
页数:9
相关论文
共 17 条
[11]   Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker [J].
Pepe, MS ;
Janes, H ;
Longton, G ;
Leisenring, W ;
Newcomb, P .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 159 (09) :882-890
[12]   Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity [J].
Saal, Lao H. ;
Johansson, Peter ;
Holm, Karolina ;
Gruvberger-Saal, Sofia K. ;
She, Qing-Bai ;
Maurer, Matthew ;
Koujak, Susan ;
Ferrando, Adolfo A. ;
Malmstrom, Per ;
Memeo, Lorenzo ;
Isola, Jorma ;
Bendahl, Par-Ola ;
Rosen, Neal ;
Hibshoosh, Hanina ;
Ringner, Markus ;
Borg, Ake ;
Parsons, Ramon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (18) :7564-7569
[13]   Molecular markers of early Parkinson's disease based on gene expression in blood [J].
Scherzer, Clemens R. ;
Eklund, Aron C. ;
Morse, Lee J. ;
Liao, Zhixiang ;
Locascio, Joseph J. ;
Fefer, Daniel ;
Schwarzschild, Michael A. ;
Schlossmacher, Michael G. ;
Hauser, Michael A. ;
Vance, Jeffery M. ;
Sudarsky, Lewis R. ;
Standaert, David G. ;
Growdon, John H. ;
Jensen, Roderick V. ;
Gullans, Steven R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) :955-960
[14]   What should be expected from feature selection in small-sample settings [J].
Sima, Chao ;
Dougherty, Edward R. .
BIOINFORMATICS, 2006, 22 (19) :2430-2436
[15]  
SPACKMAN KA, 1989, 6 INT WORKSH MACH LE
[16]   A gene-expression signature as a predictor of survival in breast cancer. [J].
van de Vijver, MJ ;
He, YD ;
van 't Veer, LJ ;
Dai, H ;
Hart, AAM ;
Voskuil, DW ;
Schreiber, GJ ;
Peterse, JL ;
Roberts, C ;
Marton, MJ ;
Parrish, M ;
Atsma, D ;
Witteveen, A ;
Glas, A ;
Delahaye, L ;
van der Velde, T ;
Bartelink, H ;
Rodenhuis, S ;
Rutgers, ET ;
Friend, SH ;
Bernards, R .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 347 (25) :1999-2009
[17]   On the sampling distribution of resubstitution and leave-one-out error estimators for linear classifiers [J].
Zollanvari, Amin ;
Braga-Neto, Ulisses M. ;
Dougherty, Edward R. .
PATTERN RECOGNITION, 2009, 42 (11) :2705-2723