Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats

被引:28
作者
Dalhus, Bjorn
Helle, Ina Hoydal
Backe, Paul H.
Alseth, Ingrun
Rognes, Torbjorn
Bjoras, Magnar
Laerdahl, Jon K. [1 ]
机构
[1] Natl Hosp Norway, Radiumhosp Med Ctr, CMBN, N-0027 Oslo, Norway
[2] Natl Hosp Norway, Radiumhosp Med Ctr, Inst Med Microbiol, N-0027 Oslo, Norway
[3] Univ Oslo, Inst Clin Biochem, N-0027 Oslo, Norway
[4] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
关键词
D O I
10.1093/nar/gkm039
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
3-methyladenine DNA glycosylases initiate repair of cytotoxic and promutagenic alkylated bases in DNA. We demonstrate by comparative modelling that Bacillus cereus AlkD belongs to a new, fifth, structural superfamily of DNA glycosylases with an alpha-alpha superhelix fold comprising six HEAT-like repeats. The structure reveals a wide, positively charged groove, including a putative base recognition pocket. This groove appears to be suitable for the accommodation of double-stranded DNA with a flipped-out alkylated base. Site-specific mutagenesis within the recognition pocket identified several residues essential for enzyme activity. The results suggest that the aromatic side chain of a tryptophan residue recognizes electron-deficient alkylated bases through stacking interactions, while an interacting aspartate-arginine pair is essential for removal of the damaged base. A structural model of AlkD bound to DNA with a flipped-out purine moiety gives insight into the catalytic machinery for this new class of DNA glycosylases.
引用
收藏
页码:2451 / 2459
页数:9
相关论文
共 53 条
[1]   A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD [J].
Alseth, I ;
Rognes, T ;
Lindbäck, T ;
Solberg, I ;
Robertsen, K ;
Kristiansen, KI ;
Mainieri, D ;
Lillehagen, L ;
Kolsto, AB ;
Bjorås, M .
MOLECULAR MICROBIOLOGY, 2006, 59 (05) :1602-1609
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   HEAT REPEATS IN THE HUNTINGTONS-DISEASE PROTEIN [J].
ANDRADE, MA ;
BORK, P .
NATURE GENETICS, 1995, 11 (02) :115-116
[4]   Comparison of ARM and HEAT protein repeats [J].
Andrade, MA ;
Petosa, C ;
O'Donoghue, SI ;
Müller, CW ;
Bork, P .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 309 (01) :1-18
[5]   SCOP database in 2004: refinements integrate structure and sequence family data [J].
Andreeva, A ;
Howorth, D ;
Brenner, SE ;
Hubbard, TJP ;
Chothia, C ;
Murzin, AG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D226-D229
[6]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[7]   Repair and genetic consequences of endogenous DNA base damage in mammalian cells [J].
Barnes, DE ;
Lindahl, T .
ANNUAL REVIEW OF GENETICS, 2004, 38 :445-476
[8]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[9]   Different efficiencies of the tag and AlkA DNA glycosylases from Escherichia coli in the removal of 3-methyladenine from single-stranded DNA [J].
Bjelland, S ;
Seeberg, E .
FEBS LETTERS, 1996, 397 (01) :127-129
[10]   PURIFICATION AND CHARACTERIZATION OF 3-METHYLADENINE DNA GLYCOSYLASE-I FROM ESCHERICHIA-COLI [J].
BJELLAND, S ;
SEEBERG, E .
NUCLEIC ACIDS RESEARCH, 1987, 15 (07) :2787-2801