Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM

被引:198
作者
Scheuring, S
Seguin, J
Marco, S
Lévy, D
Robert, B
Rigaud, JL
机构
[1] CNRS, Inst Curie, UMR 168, F-75231 Paris 05, France
[2] CEA, Lab Rech Correspondant, F-75231 Paris, France
[3] CEA Saclay, Serv Biophys Fonct Membranaires, Dept Biol Joliot Curie, F-91191 Gif Sur Yvette, France
[4] CEA Saclay, CNRS, URA 2096, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1073/pnas.0437992100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
in photosynthesis, highly organized multiprotein assemblies convert sunlight into biochemical energy with high efficiency. A challenge in structural biology is to analyze such supramolecular complexes in native membranes. Atomic force microscopy (AFM) with high lateral resolution, high signal-to-noise ratio, and the possibility to nanodissect biological samples is a unique tool to investigate multiprotein complexes at molecular resolution in situ. Here we present high-resolution AFM of the photosynthetic core complex in native Rhodopseudomonas viridis membranes. Topographs at 10-Angstrom lateral and approximate to1-Angstrom vertical resolution reveal a single reaction center (RC) surrounded by a closed ellipsoid of 16 light-harvesting (LH1) subunits. Nanodissection of the tetraheme cytochrome (4Hcyt) subunit from the RC allows demonstration that the L. and M subunits exhibit an asymmetric topography intimately associated to the LH1 subunits located at the short ellipsis axis. This architecture implies a distance distribution between the antenna and the RC compared with a centered location of the RC within a circular LH1, which may influence the energy transfer within the core complex. The LHII subunits rearrange into a circle after removal of the RC from the core complex.
引用
收藏
页码:1690 / 1693
页数:4
相关论文
共 30 条
  • [1] Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria
    Bibby, TS
    Nield, J
    Barber, J
    [J]. NATURE, 2001, 412 (6848) : 743 - 745
  • [2] ATOMIC FORCE MICROSCOPE
    BINNIG, G
    QUATE, CF
    GERBER, C
    [J]. PHYSICAL REVIEW LETTERS, 1986, 56 (09) : 930 - 933
  • [3] Submolecular resolution of single macromolecules with atomic force microscopy
    Czajkowsky, DM
    Shao, ZF
    [J]. FEBS LETTERS, 1998, 430 (1-2): : 51 - 54
  • [4] STRUCTURE OF THE PROTEIN SUBUNITS IN THE PHOTOSYNTHETIC REACTION CENTER OF RHODOPSEUDOMONAS-VIRIDIS AT 3A RESOLUTION
    DEISENHOFER, J
    EPP, O
    MIKI, K
    HUBER, R
    MICHEL, H
    [J]. NATURE, 1985, 318 (6047) : 618 - 624
  • [5] Observing single biomolecules at work with the atomic force microscope
    Engel, A
    Müller, DJ
    [J]. NATURE STRUCTURAL BIOLOGY, 2000, 7 (09) : 715 - 718
  • [6] Imaging and manipulation of biological structures with the AFM
    Fotiadis, D
    Scheuring, S
    Müller, SA
    Engel, A
    Müller, DJ
    [J]. MICRON, 2002, 33 (04) : 385 - 397
  • [7] The long-range supraorganization of the bacterial photosynthetic unit: A key role for PufX
    Frese, RN
    Olsen, JD
    Branvall, R
    Westerhuis, WHJ
    Hunter, CN
    van Grondelle, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) : 5197 - 5202
  • [8] Watching amyloid fibrils grow by time-lapse atomic force microscopy
    Goldsbury, C
    Kistler, J
    Aebi, U
    Arvinte, T
    Cooper, GJS
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (01) : 33 - 39
  • [9] Photosynthetic apparatus of purple bacteria
    Hu, XC
    Ritz, T
    Damjanovic, A
    Autenrieth, F
    Schulten, K
    [J]. QUARTERLY REVIEWS OF BIOPHYSICS, 2002, 35 (01) : 1 - 62
  • [10] Projection map of the reaction center-light harvesting 1 complex from Rhodopseudomonas viridis at 10Å resolution
    Ikeda-Yamasaki, I
    Odahara, T
    Mitsuoka, K
    Fujiyoshi, Y
    Murata, K
    [J]. FEBS LETTERS, 1998, 425 (03) : 505 - 508