Summation by parts and dissipation for domains with excised regions

被引:55
作者
Calabrese, G
Lehner, L
Reula, O
Sarbach, O
Tiglio, M
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[3] Natl Univ Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[5] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
关键词
D O I
10.1088/0264-9381/21/24/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss finite difference techniques for hyperbolic equations in non-trivial domains, as those that arise when simulating black-hole spacetimes. In particular, we construct dissipative and difference operators that satisfy the summation by parts property in domains with excised multiple cubic regions. This property can be used to derive semi-discrete energy estimates for the associated initial-boundary value problem which in turn can be used to prove numerical stability.
引用
收藏
页码:5735 / 5757
页数:23
相关论文
共 38 条
[1]   Black hole excision for dynamic black holes -: art. no. 061501 [J].
Alcubierre, M ;
Brügmann, B ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2001, 64 (06)
[2]  
[Anonymous], GRQC0204090
[3]  
[Anonymous], MATH COMPUT
[4]   Numerical relativity and compact binaries [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 376 (02) :41-131
[5]   Collapse of a magnetized star to a black hole [J].
Baumgarte, TW ;
Shapiro, SL .
ASTROPHYSICAL JOURNAL, 2003, 585 (02) :930-947
[6]   Numerical simulation of orbiting black holes -: art. no. 211101 [J].
Brügmann, B ;
Tichy, W ;
Jansen, N .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :211101-1
[7]   Spherical excision for moving black holes and summation by parts for axisymmetric systems [J].
Calabrese, G ;
Neilsen, D .
PHYSICAL REVIEW D, 2004, 69 (04)
[8]   Detecting ill posed boundary conditions in general relativity [J].
Calabrese, G ;
Sarbach, O .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (09) :3888-3899
[9]  
ESTEP D, 2002, P APPL MATH, V109, P25
[10]  
GUSTAFFSON B, 1995, TIME DEPENDENT PROBL