Summation by parts and dissipation for domains with excised regions

被引:55
作者
Calabrese, G
Lehner, L
Reula, O
Sarbach, O
Tiglio, M
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[3] Natl Univ Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[4] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[5] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
关键词
D O I
10.1088/0264-9381/21/24/004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss finite difference techniques for hyperbolic equations in non-trivial domains, as those that arise when simulating black-hole spacetimes. In particular, we construct dissipative and difference operators that satisfy the summation by parts property in domains with excised multiple cubic regions. This property can be used to derive semi-discrete energy estimates for the associated initial-boundary value problem which in turn can be used to prove numerical stability.
引用
收藏
页码:5735 / 5757
页数:23
相关论文
共 38 条
[11]   The Gowdy T3 cosmologies revisited [J].
Hern, SD ;
Stewart, JM .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (06) :1581-1593
[12]   Listening to the universe with gravitational-wave astronomy [J].
Hughes, SA .
ANNALS OF PHYSICS, 2003, 303 (01) :142-178
[13]   Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations [J].
Kidder, LE ;
Scheel, MA ;
Teukolsky, SA .
PHYSICAL REVIEW D, 2001, 64 (06)
[14]  
Kreiss H., 1989, INITIAL BOUNDARY VAL
[15]  
Kreiss H.O., 1973, GARP PUBL SER
[16]   ON THE STABILITY DEFINITION OF DIFFERENCE APPROXIMATIONS FOR THE INITIAL-BOUNDARY VALUE-PROBLEM [J].
KREISS, HO ;
WU, LX .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :213-227
[17]  
KREISS HO, 1977, EXISTENCE ENERGY EST
[18]   Numerical stability of a new conformal-traceless 3+1 formulation of the Einstein equation [J].
Laguna, P ;
Shoemaker, D .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (14) :3679-3686
[19]   Numerical relativity: a review [J].
Lehner, L .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (17) :R25-R86
[20]  
LEHNER L, 2004, GRQC0406116