Spatial distribution of persistent sites

被引:19
作者
Manoj, G [1 ]
Ray, P [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 31期
关键词
D O I
10.1088/0305-4470/33/31/304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the distribution of persistent sites (sites unvisited by particles A) in the one-dimensional A+A --> empty set reaction-diffusion model. We define the empty intervals as the separations between adjacent persistent sites, and study their size distribution n(k, t) as a function of interval length k and time t. The decay of persistence is the process of irreversible coalescence of these empty intervals, which we study analytically under the independent interval approximation (IIA). Physical considerations suggest that the asymptotic solution is given by the dynamic scaling form n(k, t) = s(-2) f(k/s) with the average interval size s similar to t(1/2). We show under the IIA that the scaling function f(x) similar to x(-tau) as x --> 0 and decays exponentially at large x. The exponent tau is related to the persistence exponent a through the scaling relation tau = 2(1 - theta). We compare these predictions with the results of numerical simulations. We determine the two-point correlation function C(r, t) under the IIA. We find that for r much less than s, C(r, t) similar to r(-alpha) where alpha = 2 - tau, in agreement with our earlier numerical results.
引用
收藏
页码:5489 / 5500
页数:12
相关论文
共 25 条
[1]   INTER-PARTICLE DISTRIBUTION-FUNCTIONS FOR ONE-SPECIES DIFFUSION-LIMITED ANNIHILATION, A+A-]0 [J].
ALEMANY, PA ;
BENAVRAHAM, D .
PHYSICS LETTERS A, 1995, 206 (1-2) :18-25
[2]  
ARAMOVITZ M, 1968, HDB MATH FUNCTIONS
[3]   NONTRIVIAL ALGEBRAIC DECAY IN A SOLUBLE MODEL OF COARSENING [J].
BRAY, AJ ;
DERRIDA, B ;
GODRECHE, C .
EUROPHYSICS LETTERS, 1994, 27 (03) :175-180
[4]   SCALE-INVARIANT REGIMES IN ONE-DIMENSIONAL MODELS OF GROWING AND COALESCING DROPLETS [J].
DERRIDA, B ;
GODRECHE, C ;
YEKUTIELI, I .
PHYSICAL REVIEW A, 1991, 44 (10) :6241-6251
[5]   EXACT FIRST-PASSAGE EXPONENTS OF 1D DOMAIN GROWTH - RELATION TO A REACTION-DIFFUSION MODEL [J].
DERRIDA, B ;
HAKIM, V ;
PASQUIER, V .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :751-754
[6]   Exact exponent for the number of persistent spins in the zero-temperature dynamics of the one-dimensional potts model [J].
Derrida, B ;
Hakim, V ;
Pasquier, V .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (5-6) :763-797
[7]   NONTRIVIAL EXPONENTS IN THE ZERO-TEMPERATURE DYNAMICS OF THE 1D ISING AND POTTS MODELS [J].
DERRIDA, B ;
BRAY, AJ ;
GODRECHE, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (11) :L357-L361
[8]  
DERRIDA B, 1996, PHYS REV LETT, V77, P2971
[9]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN
[10]   Persistence of Kardar-Parisi-Zhang interfaces [J].
Kallabis, H ;
Krug, J .
EUROPHYSICS LETTERS, 1999, 45 (01) :20-25