RNA silencing-suppressor function of Turnip crinkle virus coat protein cannot be attributed to its interaction with the Arabidopsis protein TIP

被引:33
作者
Choi, CW
Qu, F
Ren, T
Ye, XH
Morris, TJ [1 ]
机构
[1] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
[2] Pai Chai Univ, Sch Biol Sci, Taejon 302735, South Korea
关键词
D O I
10.1099/vir.0.80326-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The interaction of the coat protein (CP) of Turnip crinkle virus (TCV) with a host protein, TCV-interacting protein (TIP), from Arabidopsis thaliana has been reported previously. This interaction correlates with the ability of TCV CP to elicit the resistance response that is mediated by the resistance gene HRT in Arabidopsis ecotype Di-17. It has also been established that TCV CP is a suppressor of RNA silencing, a process by which the host plant targets viral RNA for degradation. These results have led to the speculation that TIP might be a component of the RNA-silencing pathway and that TCV CP suppresses RNA silencing through its interaction with TIP. In the current report, a number of TCV CP mutants have been investigated for their ability to suppress RNA silencing. These mutants included single amino acid substitution mutants that are known to have lost their ability to interact with TIP, as well as deletion mutants of TCV CP that are different sizes and from different regions of the protein. Results showed that each of the single amino acid substitution mutants tested retained high levels of RNA silencing-suppressor activity. In addition, a mutant containing a 5 aa deletion in the region that is known to be critical for TIP interaction retained the ability to suppress RNA silencing significantly. Larger deletions in all regions of TCV CP abolished silencing-suppressor activity. It can be concluded from these results that the RNA silencing-suppressor activity of TCV CP cannot be attributed to its ability to interact directly with TIP.
引用
收藏
页码:3415 / 3420
页数:6
相关论文
共 23 条
[1]   RNA silencing [J].
Baulcombe, D .
CURRENT BIOLOGY, 2002, 12 (03) :R82-R84
[2]   CAP-INDEPENDENT ENHANCEMENT OF TRANSLATION BY A PLANT POTYVIRUS 5' NONTRANSLATED REGION [J].
CARRINGTON, JC ;
FREED, DD .
JOURNAL OF VIROLOGY, 1990, 64 (04) :1590-1597
[3]   Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens [J].
Cooley, MB ;
Pathirana, S ;
Wu, HJ ;
Kachroo, P ;
Klessig, DF .
PLANT CELL, 2000, 12 (05) :663-676
[4]   Plant pathogens and integrated defence responses to infection [J].
Dangl, JL ;
Jones, JDG .
NATURE, 2001, 411 (6839) :826-833
[5]   Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus [J].
Deslandes, L ;
Olivier, J ;
Peeters, N ;
Feng, DX ;
Khounlotham, M ;
Boucher, C ;
Somssich, I ;
Genin, S ;
Marco, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (13) :8024-8029
[6]   The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1 [J].
Després, C ;
Chubak, C ;
Rochon, A ;
Clark, R ;
Bethune, T ;
Desveaux, D ;
Fobert, PR .
PLANT CELL, 2003, 15 (09) :2181-2191
[7]   Plant pathology: Monitoring a pathogen-targeted host protein [J].
Ellis, J ;
Dodds, P .
CURRENT BIOLOGY, 2003, 13 (10) :R400-R402
[8]   WORKING MODELS OF SPECIFIC RECOGNITION IN PLANT-MICROBE INTERACTIONS [J].
GABRIEL, DW ;
ROLFE, BG .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1990, 28 :365-391
[9]   Direct interaction of resistance gene and avirulence gene products confers rice blast resistance [J].
Jia, Y ;
McAdams, SA ;
Bryan, GT ;
Hershey, HP ;
Valent, B .
EMBO JOURNAL, 2000, 19 (15) :4004-4014
[10]   Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance [J].
Mackey, D ;
Belkhadir, Y ;
Alonso, JM ;
Ecker, JR ;
Dangl, JL .
CELL, 2003, 112 (03) :379-389