Parabolic limit and stability of the Vlasov-Fokker-Planck system

被引:72
作者
Poupaud, F
Soler, J
机构
[1] Univ Nice, UMR 6621 CNRS, Lab JA Dieudonne, F-06108 Nice 2, France
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
D O I
10.1142/S0218202500000525
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the stability of the Vlasov-Poisson-Fokker-Planck with respect to the variation of its constant parameters, the scaled thermal velocity and the scaled thermal mean free path, is analyzed. For the case in which the scaled thermal velocity is the inverse of the scaled thermal mean free path and the latter tends to zero, a parabolic limit equation is obtained for the mass density. Depending on the space dimension and on the hypothesis for the initial data, the convergence result in L-1 is weak and global in time or strong and local in time.
引用
收藏
页码:1027 / 1045
页数:19
相关论文
共 19 条
[11]   CONCENTRATIONS IN THE ONE-DIMENSIONAL VLASOV-POISSON EQUATIONS .1. TEMPORAL DEVELOPMENT AND NONUNIQUE WEAK SOLUTIONS IN THE SINGLE-COMPONENT CASE [J].
MAJDA, AJ ;
MAJDA, G ;
ZHENG, YX .
PHYSICA D, 1994, 74 (3-4) :268-300
[12]  
POUPAUD F, 1994, SER ADV MATH APPL SC, V22, P141
[13]   GENERIC GLOBAL CLASSICAL-SOLUTIONS OF THE VLASOV-FOKKER-PLANCK-POISSON SYSTEM IN 3 DIMENSIONS [J].
REIN, G ;
WECKLER, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 99 (01) :59-77
[14]   THE WEAK VORTICITY-FORMULATION OF THE 2-D EULER EQUATIONS AND CONCENTRATION-CANCELLATION [J].
SCHOCHET, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (5-6) :1077-1104
[15]  
SOLER J, IN PRESS NONLINEAR A
[16]  
STEIN EM, 1970, SINGULAR INTEGRALS D
[17]  
VICTORY HD, 1990, INDIANA U MATH J, V39, P105
[18]  
VICTORY HD, 1991, J MATH ANAL APPL, V160, P515
[19]   EXISTENCE OF GLOBAL WEAK SOLUTIONS TO ONE-COMPONENT VLASOV-POISSON AND FOKKER-PLANCK-POISSON SYSTEMS IN ONE SPACE DIMENSION WITH MEASURES AS INITIAL DATA [J].
ZHENG, YX ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (10) :1365-1401