Solving monotone inclusions via compositions of nonexpansive averaged operators

被引:352
作者
Combettes, PL [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
averaged operator; Douglas-Rach ford method; forward-backward method; monotone inclusion; monotone operator; proximal point algorithm;
D O I
10.1080/02331930412331327157
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A unified fixed point theoretic framework is proposed to investigate the asymptotic behavior of algorithms for finding solutions to monotone inclusion problems. The basic iterative scheme under consideration involves nonstationary compositions of perturbed averaged nonexpansive operators. The analysis covers proximal methods for common zero problems as well as for various splitting methods for finding a zero of the sum of monotone operators.
引用
收藏
页码:475 / 504
页数:30
相关论文
共 60 条
[21]   Hard-constrained inconsistent signal feasibility problems [J].
Combettes, PL ;
Bondon, P .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (09) :2460-2468
[22]  
Combettes PL, 2001, Encyclopedia of optimization, V2, P106
[23]  
De Pierro A.R., 1985, PESQUI OPER, V5, P1
[24]  
Douglas H. H., 1956, Trans. Am. Math. Soc., V82, P421, DOI DOI 10.1090/S0002-9947-1956-0084194-4
[25]   UNRESTRICTED ITERATIONS OF NONEXPANSIVE-MAPPINGS IN HILBERT-SPACE [J].
DYE, JM ;
REICH, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (02) :199-207
[26]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[27]  
Gubin LC., 1967, USSR Comput. Math. Math. Phys, V7, P1, DOI [DOI 10.1016/0041-5553(67)90113-9, 10.1016/0041-5553(67)90113-9]
[28]  
Kaczmarz S., 1937, B ACAD POL SCI LET A, V35, P355
[29]  
Kaplan A., 2001, J NONLINEAR CONVEX A, V2, P305
[30]   A NONLINEAR ALTERNATING DIRECTION METHOD [J].
KELLOGG, RB .
MATHEMATICS OF COMPUTATION, 1969, 23 (105) :23-&