Predicting global aerosol size distributions in general circulation models

被引:128
作者
Adams, PJ [1 ]
Seinfeld, JH
机构
[1] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA
[3] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA
关键词
general circulation model; cloud condensation nuclei; sulfate; aerosol microphysics;
D O I
10.1029/2001JD001010
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] To better represent the indirect effect of aerosols on climate, a size-resolved simulation of aerosol microphysics, size distributions, number and mass concentrations has been incorporated into the GISS general circulation model (GCM). The TwO-Moment Aerosol Sectional (TOMAS) microphysics model used here conserves aerosol number as well as mass. It has high size resolution, 30 bins between 0.01 and 10 mum diameter. As a first application, a size-resolved simulation of sulfate has been performed. The model reproduces important features of the atmospheric aerosol such as number concentrations that increase with altitude and land-sea contrasts in aerosol number concentrations and size distributions. Comparisons with observations show that simulated size distributions are realistic and condensation nuclei (CN) concentrations agree with observations within about 25%. Predicted cloud condensation nuclei (CCN) concentrations are also in reasonable agreement with observations, although there are locations for which agreement would be improved by including other aerosol components such as sea salt and carbonaceous aerosols. Sensitivity scenarios show that uncertainties in nucleation and primary emissions from fossil fuels can have significant effects on predictions of CN and CCN concentrations.
引用
收藏
页码:AAC4 / 1
页数:23
相关论文
共 118 条
[11]  
BOUCHER O, 1995, J CLIMATE, V8, P1403, DOI 10.1175/1520-0442(1995)008<1403:GEOTIA>2.0.CO
[12]  
2
[13]   THE SULFATE-CCN-CLOUD ALBEDO EFFECT - A SENSITIVITY STUDY WITH 2 GENERAL-CIRCULATION MODELS [J].
BOUCHER, O ;
LOHMANN, U .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1995, 47 (03) :281-300
[14]   European scientific assessment of the atmospheric effects of aircraft emissions [J].
Brasseur, GP ;
Cox, RA ;
Hauglustaine, D ;
Isaksen, I ;
Lelieveld, J ;
Lister, DH ;
Sausen, R ;
Schumann, U ;
Wahner, A ;
Wiesen, P .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (13) :2329-2418
[15]   Aerosol dynamics in near-field aircraft plumes [J].
Brown, RC ;
MiakeLye, RC ;
Anderson, MR ;
Kolb, CE ;
Resch, TJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D17) :22939-22953
[16]   A global three-dimensional model of tropospheric sulfate [J].
Chin, M ;
Jacob, DJ ;
Gardner, GM ;
ForemanFowler, MS ;
Spiro, PA ;
Savoie, DL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D13) :18667-18690
[17]   An assessment of the radiative effects of anthropogenic sulfate [J].
Chuang, CC ;
Penner, JE ;
Taylor, KE ;
Grossman, AS ;
Walton, JJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D3) :3761-3778
[18]   EFFECTS OF ANTHROPOGENIC SULFATE ON CLOUD DROP NUCLEATION AND OPTICAL-PROPERTIES [J].
CHUANG, CC ;
PENNER, JE .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1995, 47 (05) :566-577
[19]   ATMOSPHERIC NUCLEI IN THE REMOTE FREE-TROPOSPHERE [J].
CLARKE, AD .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1992, 14 (1-4) :479-488
[20]   Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1 [J].
Clarke, AD ;
Varner, JL ;
Eisele, F ;
Mauldin, RL ;
Tanner, D ;
Litchy, M .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D13) :16397-16409