New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis

被引:364
作者
Fan, JQ [1 ]
Li, R
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
local polynomial regression; partial linear model; penalized least squares; profile least squares; smoothly clipped absolute deviation;
D O I
10.1198/016214504000001060
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Semiparametric regression models are very useful for longitudinal data analysis. The complexity of semiparametric models and the structure of longitudinal data pose new challenges to parametric inferences and model selection that frequently arise from longitudinal data analysis. In this article, two new approaches are proposed for estimating the regression coefficients in a semiparametric model. The asymptotic normality of the resulting estimators is established. An innovative class of variable selection procedures is proposed to select significant variables in the semiparametric models. The proposed procedures are distinguished from others in that they simultaneously select significant variables and estimate unknown parameters. Rates of convergence of the resulting estimators are established. With a proper choice of regularization parameters and penalty functions, the proposed variable selection procedures are shown to perform as well as an oracle estimator. A robust standard error formula is derived using a sandwich formula and is empirically tested. Local polynomial regression techniques are used to estimate the baseline function in the semiparametric model.
引用
收藏
页码:710 / 723
页数:14
相关论文
共 32 条
[11]   DESIGN-ADAPTIVE NONPARAMETRIC REGRESSION [J].
FAN, JQ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :998-1004
[12]   Goodness-of-fit tests for parametric regression models [J].
Fan, JQ ;
Huang, LS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) :640-652
[13]   Generalized likelihood ratio statistics and Wilks phenomenon [J].
Fan, JQ ;
Zhang, CM ;
Zhang, J .
ANNALS OF STATISTICS, 2001, 29 (01) :153-193
[14]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[15]   Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data [J].
Hoover, DR ;
Rice, JA ;
Wu, CO ;
Yang, LP .
BIOMETRIKA, 1998, 85 (04) :809-822
[16]   Varying-coefficient models and basis function approximations for the analysis of repeated measurements [J].
Huang, JHZ ;
Wu, CO ;
Zhou, L .
BIOMETRIKA, 2002, 89 (01) :111-128
[17]   THE MULTICENTER AIDS COHORT STUDY - RATIONALE, ORGANIZATION, AND SELECTED CHARACTERISTICS OF THE PARTICIPANTS [J].
KASLOW, RA ;
OSTROW, DG ;
DETELS, R ;
PHAIR, JP ;
POLK, BF ;
RINALDO, CR .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1987, 126 (02) :310-318
[18]   Semiparametric and nonparametric regression analysis of longitudinal data [J].
Lin, DY ;
Ying, Z .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :103-113
[19]   Semiparametric regression for clustered data using generalized estimating equations [J].
Lin, XH ;
Carroll, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :1045-1056
[20]  
Lin XH, 2001, J AM STAT ASSOC, V96, P114