N-type colloidal semiconductor nanocrystals

被引:450
作者
Shim, M [1 ]
Guyot-Sionnest, P [1 ]
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
关键词
D O I
10.1038/35039577
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal semiconductor nanocrystals(1,2) combine the physical and chemical properties of molecules with the optoelectronic properties of semiconductors. Their colour is highly controllable, a direct consequence of quantum confinement on the electronic states(3). Such nanocrystals are a form of 'artificial atoms' (ref. 4) that may rnd applications in optoelectronic systems such as light-emitting diodes(5,6) and photovoltaic cells(7), or as components of future nanoelectronic devices. The ability to control the electron occupation (especially in n-type or p-type nanocrystals) is important for tailoring the electrical and optical properties, and should lead to a wider range of practical devices. But conventional doping by introducing impurity atoms has been unsuccessful so far: impurities tend to be expelled from the small crystalline cores (as observed for magnetic impurities(8)), and thermal ionization of the impurities (which provides free carriers) is hindered by strong confinement. Here we report the fabrication of n-type nanocrystals using an electron transfer approach commonly employed in the field of conducting organic polymers(9). We find that semiconductor nanocrystals prepared as colloids can be made n-type, with electrons in quantum confined states.
引用
收藏
页码:981 / 983
页数:4
相关论文
共 21 条
  • [1] Semiconductor clusters, nanocrystals, and quantum dots
    Alivisatos, AP
    [J]. SCIENCE, 1996, 271 (5251) : 933 - 937
  • [2] Electrons in artificial atoms
    Ashoori, RC
    [J]. NATURE, 1996, 379 (6564) : 413 - 419
  • [3] Semiconductor nanocrystals as fluorescent biological labels
    Bruchez, M
    Moronne, M
    Gin, P
    Weiss, S
    Alivisatos, AP
    [J]. SCIENCE, 1998, 281 (5385) : 2013 - 2016
  • [4] Quantum dot bioconjugates for ultrasensitive nonisotopic detection
    Chan, WCW
    Nie, SM
    [J]. SCIENCE, 1998, 281 (5385) : 2016 - 2018
  • [5] SYNTHESIS OF HIGHLY CONDUCTING FILMS OF DERIVATIVES OF POLYACETYLENE, (CH)X
    CHIANG, CK
    DRUY, MA
    GAU, SC
    HEEGER, AJ
    LOUIS, EJ
    MACDIARMID, AG
    PARK, YW
    SHIRAKAWA, H
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1978, 100 (03) : 1013 - 1015
  • [6] COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
  • [7] ELECTROLUMINESCENCE FROM CDSE QUANTUM-DOT POLYMER COMPOSITES
    DABBOUSI, BO
    BAWENDI, MG
    ONITSUKA, O
    RUBNER, MF
    [J]. APPLIED PHYSICS LETTERS, 1995, 66 (11) : 1316 - 1318
  • [8] Intraband transitions in semiconductor nanocrystals
    Guyot-Sionnest, P
    Hines, MA
    [J]. APPLIED PHYSICS LETTERS, 1998, 72 (06) : 686 - 688
  • [9] CONDUCTING FILMS OF C60 AND C70 BY ALKALI-METAL DOPING
    HADDON, RC
    HEBARD, AF
    ROSSEINSKY, MJ
    MURPHY, DW
    DUCLOS, SJ
    LYONS, KB
    MILLER, B
    ROSAMILIA, JM
    FLEMING, RM
    KORTAN, AR
    GLARUM, SH
    MAKHIJA, AV
    MULLER, AJ
    EICK, RH
    ZAHURAK, SM
    TYCKO, R
    DABBAGH, G
    THIEL, FA
    [J]. NATURE, 1991, 350 (6316) : 320 - 322
  • [10] SIZE-DEPENDENT REDOX POTENTIALS OF QUANTIZED ZINC-OXIDE MEASURED WITH AN OPTICALLY TRANSPARENT THIN-LAYER ELECTRODE
    HOYER, P
    WELLER, H
    [J]. CHEMICAL PHYSICS LETTERS, 1994, 221 (5-6) : 379 - 384