Diffusion on a hypercubic lattice with pinning potential: Exact results for the error-catastrophe problem in biological evolution

被引:11
作者
Galluccio, S
Graber, R
Zhang, YC
机构
[1] Institut de Physique Théorique, Université de Fribourg
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 10期
关键词
D O I
10.1088/0305-4470/29/10/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the theoretical biology framework one fundamental problem is the so-called error catastrophe in Darwinian evolution models. We re-examine Eigen's fundamental equations by mapping them into a polymer depinning transition problem in a 'genotype' space represented by a unitary hypercubic lattice {0, 1}(d). The exact solution of the model shows that error catastrophe arises as a direct consequence of the equations involved and confirms some previous qualitative results.
引用
收藏
页码:L249 / L255
页数:7
相关论文
共 12 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
[2]   PINNING AND ROUGHENING OF ONE-DIMENSIONAL MODELS OF INTERFACES AND STEPS [J].
CHUI, ST ;
WEEKS, JD .
PHYSICAL REVIEW B, 1981, 23 (05) :2438-2441
[3]  
EIGEN M, 1986, CHEM SCRIPTA, V26B, P13
[4]   SELFORGANIZATION OF MATTER AND EVOLUTION OF BIOLOGICAL MACROMOLECULES [J].
EIGEN, M .
NATURWISSENSCHAFTEN, 1971, 58 (10) :465-+
[5]   MOLECULAR QUASI-SPECIES [J].
EIGEN, M ;
MCCASKILL, J ;
SCHUSTER, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (24) :6881-6891
[6]  
Eigen Manfred., 1979, THE HYPERCYCLE
[7]  
FORGAS G, 1991, PHASE TRANSITIONS CR, V14
[8]  
GALLUCCIO S, UNPUB
[9]  
Lancaster P, 1985, THEORY MATRICES
[10]   EXACT SOLUTION OF THE 2D WETTING PROBLEM IN A PERIODIC POTENTIAL [J].
NECHAEV, S ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1995, 74 (10) :1815-1818