Computing dispersion interactions in density functional theory

被引:33
作者
Cooper, V. R. [1 ,2 ]
Kong, L. [2 ]
Langreth, D. C. [2 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
来源
PROCEEDINGS OF THE 22TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP 2009) | 2010年 / 3卷 / 03期
基金
美国国家科学基金会;
关键词
ADAPTED PERTURBATION-THEORY; CRYSTAL-STRUCTURE PREDICTION; KOHN-SHAM ORBITALS; INTERACTION ENERGIES; STACKING INTERACTIONS; BASE-PAIRS; BLIND TEST; COMPLEXES; BENZENE; FORCES;
D O I
10.1016/j.phpro.2010.01.201
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article techniques for including dispersion interactions within density functional theory are examined. In particular comparisons are made between four popular methods: dispersion corrected DFT, pseudopotential correction schemes, symmetry adapted perturbation theory, and a non-local density functional-the so called Rutgers-Chalmers van der Waals density functional (vdW-DF). The S22 benchmark data set is used to evaluate the relative accuracy of these methods and factors such as scalability and transferability are also discussed. We demonstrate that vdW-DF presents an excellent compromise between computational speed and accuracy and lends most easily to full scale application in solid materials. This claim is supported through a brief discussion of a recent large scale application to H-2 in a prototype metal organic framework material (MOF), Zn2BDC2TED. The vdW-DF shows overwhelming promise for first-principles studies of physisorbed molecules in porous extended systems; thereby having broad applicability for studies as diverse as molecular adsorption and storage, battery technology, catalysis and gas separations.
引用
收藏
页码:1417 / 1430
页数:14
相关论文
共 80 条
[1]   Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers [J].
Bukowski, Robert ;
Szalewicz, Krzysztof ;
Groenenboom, Gerrit ;
van der Avoird, Ad .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (04)
[2]  
CERRY J, 2005, PHYS CHEM CHEM PHYS, V7, P1624
[3]   Application of van der Waals density functional to an extended system:: Adsorption of benzene and naphthalene on graphite [J].
Chakarova-Käck, SD ;
Schröder, E ;
Lundqvist, BI ;
Langreth, DC .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)
[4]   Adsorption of phenol on graphite(0001) and α-Al2O3(0001):: Nature of van der Waals bonds from first-principles calculations [J].
Chakarova-Kack, Svetla D. ;
Borck, Oyvind ;
Schroder, Elsebeth ;
Lundqvist, Bengt I. .
PHYSICAL REVIEW B, 2006, 74 (15)
[5]   An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases [J].
Cooper, Valentino R. ;
Thonhauser, T. ;
Langreth, David C. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (20)
[6]   Stacking interactions and the twist of DNA [J].
Cooper, Valentino R. ;
Thonhauser, Timo ;
Puzder, Aaron ;
Schroder, Elsebeth ;
Lundqvist, Bengt I. ;
Langreth, David C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (04) :1304-1308
[7]   Symmetry-adapted perturbation-theory ineraction-energy decomposition for hydrogen-bonded and stacking structures [J].
Cybulski, Hubert ;
Sadlej, Joanna .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (06) :892-897
[8]   A third blind test of crystal structure prediction [J].
Day, GM ;
Motherwell, WDS ;
Ammon, HL ;
Boerrigter, SXM ;
Della Valle, RG ;
Venuti, E ;
Dzyabchenko, A ;
Dunitz, JD ;
Schweizer, B ;
van Eijck, BP ;
Erk, P ;
Facelli, JC ;
Bazterra, VE ;
Ferraro, MB ;
Hofmann, DWM ;
Leusen, FJJ ;
Liang, C ;
Pantelides, CC ;
Karamertzanis, PG ;
Price, SL ;
Lewis, TC ;
Nowell, H ;
Torrisi, A ;
Scheraga, HA ;
Arnautova, YA ;
Schmidt, MU ;
Verwer, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2005, 61 :511-527
[9]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[10]   Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment [J].
Elstner, M ;
Hobza, P ;
Frauenheim, T ;
Suhai, S ;
Kaxiras, E .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (12) :5149-5155