Development of a fast empirical design model for PEM stacks

被引:8
作者
Li, Xiao-guang [1 ]
Cao, Liu-lin [1 ]
Liu, Zhi-xiang [2 ]
Wang, Cheng [2 ]
机构
[1] Beijing Inst Chem Technol, Inst Automat, Beijing 100029, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
关键词
Proton exchange membrane fuel cell stack; Modeling; MEMBRANE FUEL-CELLS; POLYMER-ELECTROLYTE; MATHEMATICAL-MODEL; PERFORMANCE;
D O I
10.1016/j.ijhydene.2009.04.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple and fast empirical design model for a 5 kW proton exchange membrane (PEM) stack is presented in this paper. The performance analysis of the PEM stack operating on a membrane humidifying method is made through a series of experiments, including current-voltage-power characteristics, uniformity of cell unit voltages, gas pressure impact and air flux impact. Based on the above analysis, an empirical predicted model for the PEM stack has been developed by the combination of mechanistic and empirical modeling approaches to characterize and predict the voltage-current characteristics without examining in depth all physical/chemical phenomena. The good agreement between the predicted and experimental results covering a range of optimal operating conditions shows that the proposed model provides an accurate representation of the behavior for the PEM stack. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2698 / 2702
页数:5
相关论文
共 12 条
[1]   Hydrogen from hydrocarbon fuels for fuel cells [J].
Ahmed, S ;
Krumpelt, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (04) :291-301
[2]  
AMPHLETT JC, 1995, J ELECTROCHEM SOC, V142, P1, DOI 10.1149/1.2043866
[3]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[4]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[5]   Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks Part I. Evaluation and simulation of an air-breathing PEMFC stack [J].
Chu, D ;
Jiang, RZ .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :128-133
[6]   Development of polymer electrolyte membrane fuel cell stack [J].
Dhathathreyan, KS ;
Sridhar, P ;
Sasikumar, G ;
Ghosh, KK ;
Velayutham, G ;
Rajalakshmi, N ;
Subramaniam, CK ;
Raja, M ;
Ramya, K .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (11) :1107-1115
[7]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[8]   Development and application of a generalised steady-state electrochemical model for a PEM fuel cell [J].
Mann, RF ;
Amphlett, JC ;
Hooper, MAI ;
Jensen, HM ;
Peppley, BA ;
Roberge, PR .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :173-180
[9]   Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell [J].
Marr, C ;
Li, XG .
JOURNAL OF POWER SOURCES, 1999, 77 (01) :17-27
[10]   METHODS TO ADVANCE TECHNOLOGY OF PROTON-EXCHANGE MEMBRANE FUEL-CELLS [J].
TICIANELLI, EA ;
DEROUIN, CR ;
REDONDO, A ;
SRINIVASAN, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (09) :2209-2214