Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells

被引:99
作者
Li, P [1 ]
Oparil, S [1 ]
Feng, WG [1 ]
Chen, YF [1 ]
机构
[1] Univ Alabama, Dept Med, Div Cardiovasc Dis, Vasc Biol & Hypertens Program, Birmingham, AL 35294 USA
关键词
pulmonary vascular remodeling; extracellular matrix; pulmonary hypertension;
D O I
10.1152/japplphysiol.01311.2003
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
This study tested the hypothesis that expression of the novel adhesion molecule periostin (PN) and osteopontin (OPN) is increased in lung and in isolated pulmonary arterial smooth muscle cells (PASMCs) in response to the stress of hypoxia and explored the signaling pathways involved. Adult male rats were exposed to 10% O-2 for 2 wk, and growth-arrested rat PASMCs were incubated under 1% O-2, for 24 h. Hypoxia increased PN and OPN mRNA expression in rat lung. In PASMCs, hypoxia increased PN but not OPN expression. The hypoxia-responsive growth factors fibroblast growth factor-1 (FGF-1) and angiotensin II (ANG II) caused dose- and time-dependent increases in PN and OPN expression in PASMCs. FGF-1-induced PN expression was blocked by the FGF-1 receptor antagonist PD-166866 and by inhibitors of phosphatidylinositol 3-kinase (PI3K) (LY-294002, wortmannin), p70S6K (rapamycin), MEK1/2 (U-0126, PD-98059), and p38MAPK (SB-203580) but not of JNK (SP-600125). ANG II-induced PN expression was blocked by the AT(1)-receptor antagonist losartan and by inhibitors of PI3K and MEK1/2. In contrast, FGF-1-induced OPN expression was blocked by inhibitors of JNK or MEK 1/2 but not of PI3K. p70S6K, or p38MAPK. Activation of p70S6K and p38MAPK by anisomycin robustly stimulated PN but not OPN expression. This study is the first to demonstrate that growth factor-induced expression of PN in PASMCs is mediated through PI3K/p70S6K, Ras/MEK1/2, and Ras/p38MAPK signaling pathways, whereas the expression of OPN is mediated through Ras/MEK1/2 and Ras/JNK signaling pathways. These differences in signaling suggest that PN and OPN may play different roles in pulmonary vascular remodeling under pathophysiological conditions.
引用
收藏
页码:1550 / 1558
页数:9
相关论文
共 29 条
[11]  
Li GH, 2003, J AM COLL CARDIOL, V41, p34A
[12]   Fibroblast growth factor receptor-1 signaling induces osteopontin expression and vascular smooth muscle cell-dependent adventitial fibroblast migration in vitro [J].
Li, GH ;
Oparil, S ;
Kelpke, SS ;
Chen, YF ;
Thompson, JA .
CIRCULATION, 2002, 106 (07) :854-859
[13]   Fibroblast growth factor mediates hypoxia-induced endothelin-A receptor expression in lung artery smooth muscle cells [J].
Li, P ;
Oparil, S ;
Sun, JZ ;
Thompson, JA ;
Chen, YF .
JOURNAL OF APPLIED PHYSIOLOGY, 2003, 95 (02) :643-651
[14]   FGF-2 induces surfactant protein gene expression in foetal rat lung epithelial cells through a MAPK-independent pathway [J].
Matsui, R ;
Brody, JS ;
Yu, Q .
CELLULAR SIGNALLING, 1999, 11 (03) :221-228
[15]  
Miyamoto T, 1998, J CELL PHYSIOL, V177, P58, DOI 10.1002/(SICI)1097-4652(199810)177:1<58::AID-JCP6>3.0.CO
[16]  
2-D
[17]   The Role of osteopontin in lung disease [J].
O'Regan, A .
CYTOKINE & GROWTH FACTOR REVIEWS, 2003, 14 (06) :479-488
[18]  
Panek RL, 1998, J PHARMACOL EXP THER, V286, P569
[19]   Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer [J].
Sasaki, H ;
Yu, CY ;
Dai, MR ;
Tam, C ;
Loda, M ;
Auclair, D ;
Chen, LB ;
Elias, A .
BREAST CANCER RESEARCH AND TREATMENT, 2003, 77 (03) :245-252
[20]  
Shimoda LA, 2000, PHYSIOL RES, V49, P549