Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation

被引:85
作者
Yin, LM [1 ]
Krantz, B [1 ]
Russell, NS [1 ]
Deshpande, S [1 ]
Wilkinson, KD [1 ]
机构
[1] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
关键词
D O I
10.1021/bi0007019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A series of nonhydrolyzable ubiquitin dimer analogues has been synthesized and evaluated as inhibitors of ubiquitin-dependent processes. Dimer analogues were synthesized by cross-linking ubiquitin containing a terminal cysteine (G76C) to ubiquitin containing cysteine at position 11 ((76-11)Ub(2)), 29 ((76-29)Ub(2)), 48 ((76-48)Ub(2)), or 63 ((76-63)Ub(2)). A head-to-head dimer of cysteine G76C ((76-76)Ub(2)) served as a control. These analogues are mimics of the different chain linkages observed in natural polyubiquitin chains. All analogues showed weak inhibition toward the catalytic domain of UCH-L3 and a UBP pseudogene. In the absence of ubiquitin, isopeptidase T was inhibited only by the dimer linked through residue 29. In the presence of 0.5 mu M ubiquitin, isopeptidase T was inhibited by several of the dimer analogues, with the (76-29)Ub(2) dimer exhibiting a K-i of 1.8 nM. However, USP14, the human homologue of yeast Ubp6, was not inhibited at the concentrations tested. Some analogues of ubiquitin dimer also acted as selective inhibitors of conjugation and deconjugation of ubiquitin catalyzed by reticulocyte fraction II. (76-76)Ub(2) and (76-11)Ub(2) did not inhibit the conjugation of ubiquitin, while (76-29)Ub(2), (76-48)Ub(2), and (76-63)Ub(2) were potent inhibitors of conjugation. This specificity is consistent with the known ability of cells to form K29-, K48-, and K63-linked polyubiquitin chains. While (76-11)Ub(2), (76-29)Ub(2) and (76-63)Ub(2) inhibited release of ubiquitin from a pool of total conjugates, (76-48)Ub(2) and (76-76)Ub(2) showed no significant inhibition. Isopeptidase T was shown to specifically disassemble two conjugates (assumed to be di- and triubiquitin with masses of 26 and 17 kDa) formed in the reticulocyte lysate system. This activity was inhibited differentially by all dimer analogues. The inhibitor selectivity for deconjugation of the 26 and 17 kDa conjugates was similar to that observed for isopeptidase T. The observations suggest that these two conjugated proteins of the reticulocyte lysate are specific substrates for isopeptidase T in lysates.
引用
收藏
页码:10001 / 10010
页数:10
相关论文
共 46 条
[1]   Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids [J].
Adams, J ;
Behnke, M ;
Chen, SW ;
Cruickshank, AA ;
Dick, LR ;
Grenier, L ;
Klunder, JM ;
Ma, YT ;
Plamondon, L ;
Stein, RL .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 1998, 8 (04) :333-338
[2]  
Amerik AY, 1997, EMBO J, V16, P4826
[3]   STRESS RESISTANCE IN SACCHAROMYCES-CEREVISIAE IS STRONGLY CORRELATED WITH ASSEMBLY OF A NOVEL TYPE OF MULTIUBIQUITIN CHAIN [J].
ARNASON, T ;
ELLISON, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :7876-7883
[4]   Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2(EPF) and RAD6 are recognized by 26 S proteasome subunit 5 [J].
Baboshina, OV ;
Haas, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (05) :2823-2831
[5]  
CHEN ZJ, 1990, J BIOL CHEM, V265, P21835
[6]   ATP-DEPENDENT CONJUGATION OF RETICULOCYTE PROTEINS WITH THE POLYPEPTIDE REQUIRED FOR PROTEIN-DEGRADATION [J].
CIECHANOVER, A ;
HELLER, H ;
ELIAS, S ;
HAAS, AL ;
HERSHKO, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (03) :1365-1368
[7]   HEAT-STABLE POLYPEPTIDE COMPONENT OF AN ATP-DEPENDENT PROTEOLYTIC SYSTEM FROM RETICULOCYTES [J].
CIECHANOVER, A ;
HOD, Y ;
HERSHKO, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1978, 81 (04) :1100-1105
[8]   Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes [J].
Dang, LC ;
Melandri, FD ;
Stein, RL .
BIOCHEMISTRY, 1998, 37 (07) :1868-1879
[9]   INHIBITION OF PROTEASOME ACTIVITIES AND SUBUNIT-SPECIFIC AMINO-TERMINAL THREONINE MODIFICATION BY LACTACYSTIN [J].
FENTEANY, G ;
STANDAERT, RF ;
LANE, WS ;
CHOI, S ;
COREY, EJ ;
SCHREIBER, SL .
SCIENCE, 1995, 268 (5211) :726-731
[10]   ROLE OF ARGININE-TRANSFER RNA IN PROTEIN-DEGRADATION BY THE UBIQUITIN PATHWAY [J].
FERBER, S ;
CIECHANOVER, A .
NATURE, 1987, 326 (6115) :808-811