Tri-reforming of methane:: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios

被引:358
作者
Song, CS
Wei, P
机构
[1] Penn State Univ, Clean Fuels & Catalysis Program, Energy Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Energy & Geoenvironm Engn, University Pk, PA 16802 USA
关键词
tri-reforming; CO2; reforming; steam reforming; synthesis gas; catalyst;
D O I
10.1016/j.cattod.2004.09.054
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A novel process concept called tri-reforming of methane has been proposed in our laboratory using CO2 in the flue gases from fossil fuel-based power plants without CO2 separation [C. Song, Chemical Innovation 31 (2001) 21-26]. The proposed tri-reforming process is a synergetic combination Of CO2 reforming, steam reforming, and partial oxidation of methane in a single reactor for effective production of industrially useful synthesis gas (syngas). Both experimental testing and computational analysis show that tri-reforming can not only produce synthesis gas (CO + H-2) with desired H-2/CO ratios (1.5-2.0), but also could eliminate carbon formation which is usually a serious problem in the CO2 reforming of methane. These two advantages have been demonstrated by tri-reforming of CH4 in a fixed-bed flow reactor at 850 degreesC with supported nickel catalysts. Over 95% CH4 conversion and about 80% CO2 conversion can be achieved in tri-reforming over Ni catalysts supported on an oxide substrate. The type and nature of catalysts have a significant impact on CO2 conversion in the presence of H2O and O-2 in tri-reforming in the temperature range of 700-850 degreesC. Among all the catalysts tested for tri-reforming, their ability to enhance the conversion of CO2 follows the order of Ni/MgO > Ni/MgO/CeZrO > Ni/CeO2 approximate to Ni/ZrO2 approximate to Ni/Al2O3 > Ni/CeZrO. The higher CO2 conversion over Ni/MgO and Ni/MgO/CeZrO in tri-reforming may be related to the interaction of CO2 with MgO and more interface between Ni and MgO resulting from the formation of NiO/MgO solid solution. Results of catalytic performance tests over Ni/MgO/CeZrO catalysts at 850 degreesC and 1 atm with different feed compositions confirm the predicted equilibrium conversions based on the thermodynamic analysis for tri-reforming of methane. Kinetics of tri-reforming were also examined. The reaction orders with respect to partial pressures Of CO2 and H2O are different over Ni/MgO, Ni/MgO/CeZrO, and Ni/Al2O3 catalysts for tri-reforming. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:463 / 484
页数:22
相关论文
共 47 条
[1]   Deactivation and coke accumulation during CO2/CH4 reforming over Pt catalysts [J].
Bitter, JH ;
Seshan, K ;
Lercher, JA .
JOURNAL OF CATALYSIS, 1999, 183 (02) :336-343
[2]   The state of zirconia supported platinum catalysts for CO2/CH4 reforming [J].
Bitter, JH ;
Seshan, K ;
Lercher, JA .
JOURNAL OF CATALYSIS, 1997, 171 (01) :279-286
[3]   NIO/CAO-CATALYZED FORMATION OF SYNGAS BY COUPLED EXOTHERMIC OXIDATIVE CONVERSION AND ENDOTHERMIC CO2 AND STEAM REFORMING OF METHANE [J].
CHOUDHARY, VR ;
RAJPUT, AM ;
PRABHAKAR, B .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1994, 33 (20) :2104-2106
[4]  
Choudhary VR, 1998, J CHEM TECHNOL BIOT, V73, P345, DOI 10.1002/(SICI)1097-4660(199812)73:4<345::AID-JCTB961>3.3.CO
[5]  
2-R
[6]   ENERGY-EFFICIENT METHANE-TO-SYNGAS CONVERSION WITH LOW H-2/CO RATIO BY SIMULTANEOUS CATALYTIC REACTIONS OF METHANE WITH CARBON-DIOXIDE AND OXYGEN [J].
CHOUDHARY, VR ;
RAJPUT, AM ;
PRABHAKAR, B .
CATALYSIS LETTERS, 1995, 32 (3-4) :391-396
[7]   Simultaneous carbon dioxide and steam reforming of methane to syngas over NiO-CaO catalyst [J].
Choudhary, VR ;
Rajput, AM .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (11) :3934-3939
[8]   THE CHEMISTRY OF METHANE REFORMING WITH CARBON-DIOXIDE AND ITS CURRENT AND POTENTIAL APPLICATIONS [J].
EDWARDS, JH ;
MAITRA, AM .
FUEL PROCESSING TECHNOLOGY, 1995, 42 (2-3) :269-289
[9]   Syngas production from natural gas using ZrO2-supported metals [J].
Hegarty, MES ;
O'Connor, AM ;
Ross, JRH .
CATALYSIS TODAY, 1998, 42 (03) :225-232
[10]   An estimate of surface mobility of CO2, on γ-alumina and MgO-modified γ-alumina above 500 K [J].
Horiuchi, T ;
Osaki, T ;
Sugiyama, T ;
Suzuki, K ;
Mori, T .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1998, 204 (01) :217-218