Statistics of Lagrangian velocities in turbulent flows

被引:38
作者
Friedrich, R [1 ]
机构
[1] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
关键词
D O I
10.1103/PhysRevLett.90.084501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a generalized Fokker-Planck equation for the joint position-velocity probability distribution of a single fluid particle in a turbulent flow. Based on a simple estimate, the diffusion term is related to the two-point two-time Eulerian acceleration-acceleration correlation. Dimensional analysis yields a velocity increment probability distribution with normal scaling vapproximate tot(1/2). However, the statistics need not be Gaussian.
引用
收藏
页数:4
相关论文
共 22 条
[11]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[12]  
Monin A., 1975, Statistical Fluid Mechanics: Mechanics of Turbulence 2, VII
[13]  
Monin AS, 1971, STAT FLUID MECH
[14]  
Mordant N, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.214501
[15]  
MORDANT N, PHYSICS0206013
[16]  
OBOUKHOV AM, 1959, ADV GEOPHYS, V6, P113
[17]   ANALYTICAL SOLUTIONS FOR DIFFUSION ON FRACTAL OBJECTS [J].
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (05) :455-458
[18]   Accelerations in isotropic and homogeneous turbulence and Taylor's hypothesis [J].
Pinsky, M ;
Khain, A ;
Tsinober, A .
PHYSICS OF FLUIDS, 2000, 12 (12) :3195-3204
[19]  
Pope S., 2001, Turbulent Flows, DOI DOI 10.1017/CBO9780511840531
[20]   Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence [J].
Tsinober, A ;
Vedula, P ;
Yeung, PK .
PHYSICS OF FLUIDS, 2001, 13 (07) :1974-1984