Robust dynamic programming for min-max model predictive control of constrained uncertain systems

被引:84
作者
Diehl, M [1 ]
Björnberg, J
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
constraints; dynamic programming; multiparametric programming; receding horizon control (RHC); robustness;
D O I
10.1109/TAC.2004.838489
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address min-max model predictive control (MPC) for uncertain discrete-time systems by a robust dynamic programming approach, and develop an algorithm that is suitable for linearly cons trained polytopic systems with piecewise affine cost functions. The method uses polyhedral representations of the cost-to-go functions and feasible sets, and performs multiparametric programming by a duality based approach in each recursion step. We show how to apply the method to robust MPC, and give conditions guaranteeing closed loop stability. Finally, we apply the method to a tutorial example, a parking car with uncertain mass.
引用
收藏
页码:2253 / 2257
页数:5
相关论文
共 18 条
[1]  
Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
[2]   Min-max control of constrained uncertain discrete-time linear systems [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1600-1606
[3]   Model predictive control based on linear programming - The explicit solution [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (12) :1974-1985
[4]  
Campo P. J., 1987, Proceedings of the 1987 American Control Conference, P1021
[5]  
Chen H, 1997, P AMER CONTR CONF, P3073, DOI 10.1109/ACC.1997.612023
[6]   Min-max model predictive control of nonlinear systems using discontinuous feedbacks [J].
Fontes, FACC ;
Magni, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (10) :1750-1755
[7]  
GENCELI H, 1995, AICHE J, V41, P2098
[8]  
HALEMANE K, 1981, 74 ANN M AICHE NEW O
[9]   Feedback min-max model predictive control using a single linear program: robust stability and the explicit solution [J].
Kerrigan, EC ;
Maciejowski, JM .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (04) :395-413
[10]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379