A key role for ALD1 in activation of local and systemic defenses in Arabidopsis

被引:151
作者
Song, JT
Lu, H
McDowell, JM
Greenberg, JT
机构
[1] Univ Chicago, Erman Biol Ctr, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA
[2] Virginia Polytech Inst & State Univ, Dept Plant Pathol Physiol & Weed Sci, Blacksburg, VA 24061 USA
关键词
PAD4; salicylic acid; systemic acquired resistance; camalexin; acd6-1;
D O I
10.1111/j.1365-313X.2004.02200.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis thaliana agd2-like defense response protein1 (ald1) mutant was previously found to be hypersusceptible to the virulent bacterial pathogen Pseudomonas syringae and had reduced accumulation of the defense signal salicylic acid (SA). ALD1 was shown to possess aminotransferase activity in vitro, suggesting it generates an amino acid-derived defense signal. We now find ALD1 to be a key defense component that acts in multiple contexts and partially requires the PHYTOALEXIN DEFICIENT4 (PAD4) defense regulatory gene for its expression in response to infection. ald1 plants have increased susceptibility to avirulent P. syringae strains, are unable to activate systemic acquired resistance and are compromised for resistance to the oomycete pathogen Peronospora parasitica in mutants with constitutively active defenses. ALD1 and PAD4 can act additively to control SA, PATHOGENESIS RELATED GENE1 (PR1) transcript and camalexin (an antimicrobial metabolite) accumulation as well as disease resistance. Finally, ALD1 and PAD4 can mutually affect each other's expression in a constitutive defense mutant, suggesting that these two genes can act in a signal amplification loop.
引用
收藏
页码:200 / 212
页数:13
相关论文
共 46 条
[1]   The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance [J].
Bowling, SA ;
Clarke, JD ;
Liu, YD ;
Klessig, DF ;
Dong, XN .
PLANT CELL, 1997, 9 (09) :1573-1584
[2]   Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance [J].
Cao, H ;
Li, X ;
Dong, XN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6531-6536
[3]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[4]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[5]   Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis [J].
Clarke, JD ;
Volko, SM ;
Ledford, H ;
Ausubel, FM ;
Dong, XN .
PLANT CELL, 2000, 12 (11) :2175-2190
[6]   A CENTRAL ROLE OF SALICYLIC-ACID IN PLANT-DISEASE RESISTANCE [J].
DELANEY, TP ;
UKNES, S ;
VERNOOIJ, B ;
FRIEDRICH, L ;
WEYMANN, K ;
NEGROTTO, D ;
GAFFNEY, T ;
GUTRELLA, M ;
KESSMANN, H ;
WARD, E ;
RYALS, J .
SCIENCE, 1994, 266 (5188) :1247-1250
[7]   ARABIDOPSIS SIGNAL-TRANSDUCTION MUTANT DEFECTIVE IN CHEMICALLY AND BIOLOGICALLY INDUCED DISEASE RESISTANCE [J].
DELANEY, TP ;
FRIEDRICH, L ;
RYALS, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6602-6606
[8]   Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 [J].
Feys, BJ ;
Moisan, LJ ;
Newman, MA ;
Parker, JE .
EMBO JOURNAL, 2001, 20 (19) :5400-5411
[9]   REQUIREMENT OF SALICYLIC-ACID FOR THE INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
GAFFNEY, T ;
FRIEDRICH, L ;
VERNOOIJ, B ;
NEGROTTO, D ;
NYE, G ;
UKNES, S ;
WARD, E ;
KESSMANN, H ;
RYALS, J .
SCIENCE, 1993, 261 (5122) :754-756
[10]   Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping [J].
Glazebrook, J ;
Chen, WJ ;
Estes, B ;
Chang, HS ;
Nawrath, C ;
Métraux, JP ;
Zhu, T ;
Katagiri, F .
PLANT JOURNAL, 2003, 34 (02) :217-228