PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction

被引:168
作者
Qiao, J [1 ]
Huang, F [1 ]
Lum, H [1 ]
机构
[1] Rush Presbyterian St Lukes Med Ctr, Dept Pharmacol, Chicago, IL 60612 USA
关键词
Rho guanosine 5 '-triphosphate; protein kinase A inhibitor; guanine nucleotide dissociation inhibitor; endothelial resistance;
D O I
10.1152/ajplung.00429.2002
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Much evidence indicates that cAMP-dependent protein kinase (PKA) prevents increased endothelial permeability induced by inflammatory mediators. We investigated the hypothesis that PKA inhibits Rho GTPases, which are regulator proteins believed to mediate endothelial barrier dysfunction. Stimulation of human microvascular endothelial cells (HMEC) with thrombin ( 10 nM) increased activated RhoA (RhoA-GTP) within 1 min, which remained elevated approximately fourfold over control for 15 min. The activation was accompanied by RhoA translocation to the cell membrane. However, thrombin did not activate Cdc42 or Rac1 within similar time points, indicating selectivity of activation responses by Rho GTPases. Pretreatment of HMEC with 10 muM forskolin plus 1 muM IBMX (FI) to elevate intracellular cAMP levels inhibited both thrombin-induced RhoA activation and translocation responses. FI additionally inhibited thrombin-mediated dissociation of RhoA from guanine nucleotide dissociation inhibitor (GDI) and enhanced in vivo incorporation of P-32 by GDI. HMEC pretreated in parallel with FI showed >50% reduction in time for the thrombin-mediated resistance drop to return to near baseline and inhibition of similar to23% of the extent of resistance drop. Infection of HMEC with replication-deficient adenovirus containing the protein kinase A inhibitor gene ( PKA inhibitor) blocked both the FI-mediated protective effects on RhoA activation and resistance changes. In conclusion, the results provide evidence that PKA inhibited RhoA activation in endothelial cells, supporting a signaling mechanism of protection against vascular endothelial barrier dysfunction.
引用
收藏
页码:L972 / L980
页数:9
相关论文
共 49 条
[1]  
ADAMSON P, 1992, J BIOL CHEM, V267, P20033
[2]   Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice [J].
Adamson, RH ;
Curry, FE ;
Adamson, G ;
Liu, B ;
Jiang, Y ;
Aktories, K ;
Barth, H ;
Daigeler, A ;
Golenhofen, N ;
Ness, W ;
Drenckhahn, D .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 539 (01) :295-308
[3]   HMEC-1 - ESTABLISHMENT OF AN IMMORTALIZED HUMAN MICROVASCULAR ENDOTHELIAL-CELL LINE [J].
ADES, EW ;
CANDAL, FJ ;
SWERLICK, RA ;
GEORGE, VG ;
SUMMERS, S ;
BOSSE, DC ;
LAWLEY, TJ .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1992, 99 (06) :683-690
[4]   COMPOUNDS THAT INCREASE CAMP PREVENT ISCHEMIA-REPERFUSION PULMONARY CAPILLARY INJURY [J].
ADKINS, WK ;
BARNARD, JW ;
MAY, S ;
SEIBERT, AF ;
HAYNES, J ;
TAYLOR, AE .
JOURNAL OF APPLIED PHYSIOLOGY, 1992, 72 (02) :492-497
[5]   Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J].
Amano, M ;
Ito, M ;
Kimura, K ;
Fukata, Y ;
Chihara, K ;
Nakano, T ;
Matsuura, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20246-20249
[6]   Activation of RhoA by thrombin in endothelial hyperpermeability - Role of Rho kinase and protein tyrosine kinases [J].
Amerongen, GPV ;
van Delft, S ;
Vermeer, MA ;
Collard, JG ;
van Hinsbergh, VWM .
CIRCULATION RESEARCH, 2000, 87 (04) :335-340
[7]   Transient and prolonged increase in endothelial permeability induced by histamine and thrombin -: Role of protein kinases, calcium, and RhoA [J].
Amerongen, GPV ;
Draijer, R ;
Vermeer, MA ;
van Hinsbergh, VWM .
CIRCULATION RESEARCH, 1998, 83 (11) :1115-1123
[8]   Effectors for the Rho GTPases [J].
Aspenström, P .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (01) :95-102
[9]   Phosphorylation of Rho GDI stabilizes the Rho A-Rho GDI complex in neutrophil cytosol [J].
Bourmeyster, N ;
Vignais, PV .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 218 (01) :54-60
[10]   Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes [J].
Buscà, R ;
Abbe, P ;
Mantoux, F ;
Aberdam, E ;
Peyssonnaux, C ;
Eychène, A ;
Ortonne, JP ;
Ballotti, R .
EMBO JOURNAL, 2000, 19 (12) :2900-2910