Two- and three-loop beta function of non-commutative Φ44 theory

被引:50
作者
Disertori, M. [1 ]
Rivasseau, V.
机构
[1] Univ Rouen, UMR CNRS 6085, Lab Math Rapheal Salem, F-76801 Rouen, France
[2] Univ Paris 11, UMR CNRS 8627, Lab Phys Theor, F-91405 Orsay, France
来源
EUROPEAN PHYSICAL JOURNAL C | 2007年 / 50卷 / 03期
关键词
D O I
10.1140/epjc/s10052-007-0211-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The simplest non-commutative renormalizable field theory, the phi(4)(4) stop model on four dimensional Moyal space with harmonic potential, is asymptotically safe at one loop, as shown by Grosse and Wulkenhaar. We extend this result up to three loops. If this remains true at any loop, it should allow for a full non-perturbative construction of this model.
引用
收藏
页码:661 / 671
页数:11
相关论文
共 14 条
[1]  
Connes A, 1998, J HIGH ENERGY PHYS
[2]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[3]  
Glimm J., 1987, Quantum Physics
[4]  
Grosse H, 2004, EUR PHYS J C, V35, P277, DOI 10.1140/epjc/s2004-01853-x
[5]   Renormalisation of σ4-theory on noncommutative R4 stop in the matrix base [J].
Grosse, H ;
Wulkenhaar, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (02) :305-374
[6]   Power-counting theorem for non-local matrix models and renormalisation [J].
Grosse, H ;
Wulkenhaar, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (01) :91-127
[7]  
Gurau R, 2006, COMMUN MATH PHYS, V267, P515, DOI 10.1007/s00220-006-0055-8
[8]  
Langmann E, 2004, J HIGH ENERGY PHYS
[9]   Duality in scalar field theory on noncommutative phase spaces [J].
Langmann, E ;
Szabo, RJ .
PHYSICS LETTERS B, 2002, 533 (1-2) :168-177
[10]   Renormalisation of noncommutative φ4-theory by multi-scale analysis [J].
Rivasseau, V ;
Vignes-Tourneret, F ;
Wulkenhaar, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (03) :565-594