The transmembrane domain of the amyloid precursor protein in microsomal membranes is on both sides shorter than predicted

被引:39
作者
Grziwa, B
Grimm, MOW
Masters, CL
Beyreuther, K
Hartmann, T
Lichtenthaler, SF
机构
[1] Univ Heidelberg, Ctr Mol Biol, D-69120 Heidelberg, Germany
[2] Univ Melbourne, Dept Pathol, Parkville, Vic 3052, Australia
[3] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Boston, MA 02114 USA
关键词
D O I
10.1074/jbc.M210047200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The amyloid precursor protein is cleaved within its ectodomain by beta-amyloid-converting enzyme (BACE) yielding C99, which is further cleaved by gamma-secretase within its putative transmembrane domain (TMD). Because it is difficult to envisage how a protease may cleave within the membrane, alternative mechanisms have been proposed for gamma-cleavage in which the TMD is shorter than predicted or positioned such that the gamma-cleavage site is accessible to cytosolic proteases. Here, we have biochemically determined the length of the TMD of C99 in microsomal membranes. Using a single cysteine mutagenesis scan of C99 combined with cysteine modification with a membrane-impermeable labeling reagent, we identified which residues are accessible to modification and thus located outside of the membrane. We find that in endoplasmic reticulum-derived microsomes the TMD of C99 consists of 12 residues that span from residues 37 to 48, which is N- and C-terminally shorter than predicted. Thus, the gamma-cleavage sites are positioned around the middle of the lipid bilayer and are unlikely to be accessible to cytosolic proteases. Moreover, the center of the TMD is positioned at the gamma-cleavage site at residue 42. Our data are consistent with a model in which gamma-secretase is a membrane protein that cleaves at the center of the membrane.
引用
收藏
页码:6803 / 6808
页数:6
相关论文
共 47 条
[1]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[2]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[3]   A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60 [J].
Cao, XW ;
Südhof, TC .
SCIENCE, 2001, 293 (5527) :115-120
[4]   Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities [J].
Citron, M ;
Diehl, TS ;
Gordon, G ;
Biere, AL ;
Seubert, P ;
Selkoe, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13170-13175
[5]   Solution structure of amyloid β-peptide(1-40) in a water-micelle environment.: Is the membrane-spanning domain where we think it is? [J].
Coles, M ;
Bicknell, W ;
Watson, AA ;
Fairlie, DP ;
Craik, DJ .
BIOCHEMISTRY, 1998, 37 (31) :11064-11077
[6]   The amyloid precursor protein (APP)-cytoplasmic fragment generated by γ-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture [J].
Cupers, P ;
Orlans, I ;
Craessaerts, K ;
Annaert, W ;
De Strooper, B .
JOURNAL OF NEUROCHEMISTRY, 2001, 78 (05) :1168-1178
[7]  
De Strooper B, 2000, J CELL SCI, V113, P1857
[8]   AMYLOIDOGENICITY OF RODENT AND HUMAN BETA-A4 SEQUENCES [J].
DYRKS, T ;
DYRKS, E ;
MASTERS, CL ;
BEYREUTHER, K .
FEBS LETTERS, 1993, 324 (02) :231-236
[9]   IDENTIFICATION, TRANSMEMBRANE ORIENTATION AND BIOGENESIS OF THE AMYLOID A4 PRECURSOR OF ALZHEIMERS-DISEASE [J].
DYRKS, T ;
WEIDEMANN, A ;
MULTHAUP, G ;
SALBAUM, JM ;
LEMAIRE, HG ;
KANG, J ;
MULLERHILL, B ;
MASTERS, CL ;
BEYREUTHER, K .
EMBO JOURNAL, 1988, 7 (04) :949-957
[10]   ISOLATION OF INTRACELLULAR MEMBRANES BY MEANS OF SODIUM-CARBONATE TREATMENT - APPLICATION TO ENDOPLASMIC-RETICULUM [J].
FUJIKI, Y ;
HUBBARD, AL ;
FOWLER, S ;
LAZAROW, PB .
JOURNAL OF CELL BIOLOGY, 1982, 93 (01) :97-102