The Cramr-Rao Bound for Estimating a Sparse Parameter Vector

被引:106
作者
Ben-Haim, Zvika [1 ]
Eldar, Yonina C. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Constrained estimation; Cramer-Rao bound (CRB); sparse estimation; SIGNALS;
D O I
10.1109/TSP.2010.2045423
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The goal of this contribution is to characterize the best achievable mean-squared error (MSE) in estimating a sparse deterministic parameter from measurements corrupted by Gaussian noise. To this end, an appropriate definition of bias in the sparse setting is developed, and the constrained Cramer-Rao bound (CRB) is obtained. This bound is shown to equal the CRB of an estimator with knowledge of the support set, for almost all feasible parameter values. Consequently, in the unbiased case, our bound is identical to the MSE of the oracle estimator. Combined with the fact that the CRB is achieved at high signal-to-noise ratios signal-to-noise ratio (SNRs) by the maximum likelihood technique, our result provides a new interpretation for the common practice of using the oracle estimator as a gold standard against which practical approaches are compared.
引用
收藏
页码:3384 / 3389
页数:6
相关论文
共 20 条
[1]   Asymptotic Achievability of the Cramer-Rao Bound for Noisy Compressive Sampling [J].
Babadi, Behtash ;
Kalouptsidis, Nicholas ;
Tarokh, Vahid .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (03) :1233-1236
[2]   Blind minimax estimation [J].
Ben-Haim, Zvika ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (09) :3145-3157
[3]   On the Constrained Cramer-Rao Bound With a Singular Fisher Information Matrix [J].
Ben-Haim, Zvika ;
Eldar, Yonina C. .
IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (06) :453-456
[4]  
BENHAIM Z, 2009, P IEEE WORKSH STAT S
[5]  
BENHAIM Z, 2010, 1714 DEP EL ENG TECH
[6]  
BENHAIM Z, 2009, IEEE T SIGNAL PROCES
[7]  
CANDES EJ, 2006, ACTA NUMER, P1
[8]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[9]   Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization [J].
Donoho, DL ;
Elad, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2197-2202
[10]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745