Thermal conductivity enhancement of Ag nanowires on an organic phase change material

被引:242
作者
Zeng, J. L. [1 ]
Cao, Z. [1 ]
Yang, D. W. [1 ]
Sun, L. X. [2 ]
Zhang, L. [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Chem & Biol Engn, Changsha 410004, Hunan, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Mat & Thermochem Lab, Dalian 116023, Peoples R China
关键词
Silver nanowires; Composites materials; Nanocomposites; Thermal conductivity; Phase change materials; ENERGY-STORAGE; GRAPHITE-MATRIX; PCM; SHAPE; POLYPROPYLENE; PERFORMANCE; COMPOSITES; BUILDINGS; SYSTEM; MWNTS;
D O I
10.1007/s10973-009-0472-y
中图分类号
O414.1 [热力学];
学科分类号
摘要
One of the greatest challenges in the application of organic phase change materials (PCMs) is to increase their thermal conductivity while maintaining high phase change enthalpy. 1-Tetradecanol/Ag nanowires composite PCM containing 62.73 wt% (about 11.8 vol%) of Ag nanowires showed remarkably high thermal conductivity (1.46 W m(-1) K-1) and reasonably high phase change enthalpy (76.5 J g(-1)). This behavior was attributed to the high aspect ratio of Ag nanowires, few thermal conduct interfaces, and high interface thermal conductivity of Ag nanowires in the composite PCM. These results indicated that Ag nanowires might be strong candidates for thermal conductivity enhancement of organic PCMs.
引用
收藏
页码:385 / 389
页数:5
相关论文
共 28 条
[11]   Electrical and thermal conductivity of polymers filled with metal powders [J].
Mamunya, YP ;
Davydenko, VV ;
Pissis, P ;
Lebedev, E .
EUROPEAN POLYMER JOURNAL, 2002, 38 (09) :1887-1897
[12]   Thermal conductivity enhancement of phase change materials using a graphite matrix [J].
Mills, Andrew ;
Farid, Mohammed ;
Selman, J. R. ;
Al-Hallaj, Said .
APPLIED THERMAL ENGINEERING, 2006, 26 (14-15) :1652-1661
[13]   Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks [J].
Nakaso, Koichi ;
Teshima, Hirofurni ;
Yoshimura, Akito ;
Nogarni, Seiichi ;
Hamada, Yuichi ;
Fukai, Jun .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2008, 47 (05) :879-885
[14]   Thermal interface materials: Historical perspective, status, and future directions [J].
Prasher, Ravi .
PROCEEDINGS OF THE IEEE, 2006, 94 (08) :1571-1586
[15]   Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material [J].
Py, X ;
Olives, R ;
Mauran, S .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (14) :2727-2737
[16]   Heat transfer enhancement in latent heat thermal storage system for buildings [J].
Stritih, U .
ENERGY AND BUILDINGS, 2003, 35 (11) :1097-1104
[17]  
Sun YG, 2002, ADV MATER, V14, P833, DOI 10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO
[18]  
2-K
[19]   Effect of particle shape on thermal conductivity of copper reinforced polymer composites [J].
Tekce, H. Serkan ;
Kumlutas, Dilek ;
Tavman, Ismail H. .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2007, 26 (01) :113-121
[20]   Low-temperature heat capacities and thermodynamic properties of 2,2-dimethyl-1,3-propanediol [J].
Tong, B. ;
Tan, Z.-C. ;
Lv, X. C. ;
Sun, L. X. ;
Xu, F. ;
Shi, Q. ;
Li, Y. S. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 90 (01) :217-221