Quiescent neural cells regain multipotent stem cell characteristics influenced by adult neural stem cells in co-culture

被引:20
作者
Alexanian, AR [1 ]
Kurpad, SN [1 ]
机构
[1] Med Coll Wisconsin, Neurosci Res Lab, Dept Neurosurg, VAMC, Milwaukee, WI 53295 USA
关键词
neural cells; quiescent; neural stem cells; dedifferentiation; neurosphere;
D O I
10.1016/j.expneurol.2004.10.006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The source of cells participating in central nervous system (CNS) tissue repair and regeneration is poorly defined. One possible source is quiescent neural cells that can persist in CNS in the form of dormant progenitors or highly specialized cell types. Under appropriate conditions, these quiescent cells may be capable of re-entering the mitotic cell cycle and contributing to the stem cell pool. The aim of this study was to determine whether in vitro differentiated neural stem cells (NSC) can regain their multipotent-like stem cell characteristics in coculture with NSC. To this end, we induced neural differentiation by plating NSC, derived from the periventricular subependymal zone (SEZ) of ROSA26 transgenic mice in Neurobasal A/B27 medium in the absence of bFGF. Under these conditions, NSC differentiated into neurons, glia, and oligodendrocytes. While the level of Nestin expression was downregulated, persistence of dormant progenitors could not be ruled out. However, further addition of bFGF or bFGF/EGF with conditioned medium derived from adult NSC did not induce any noticeable cell proliferation. In another experiment, differentiated neural cells were cultured with adult NSC, isolated from the hippocampus of Balb/c mice, in the presence bFGF. This resulted in proliferating colonies of ROSA26 derived cells that mimicked NSC in their morphology, growth kinetics, and expressed NSC marker proteins. The average nuclear area and DAPI fluorescence intensity of these cells were similar to that of NSC grown alone. We conclude that reactivation of quiescent neural cells can be initiated by NSC-associated short-range cues but not by cell fusion. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 197
页数:5
相关论文
共 37 条
[1]   Differentiating adult hippocampal stem cells into neural crest derivatives [J].
Alexanian, AR ;
Sieber-Blum, M .
NEUROSCIENCE, 2003, 118 (01) :1-5
[2]   Proliferation and regeneration of retrogradely labeled adult rat corticospinal neurons in culture [J].
Alexanian, AR ;
Nornes, HO .
EXPERIMENTAL NEUROLOGY, 2001, 170 (02) :277-282
[3]   Cell differentiation - Hepatocytes from nonhepatic adult stem cells [J].
Alison, MR ;
Poulsom, R ;
Jeffery, R ;
Dhillon, AP ;
Quaglia, A ;
Jacob, J ;
Novelli, M ;
Prentice, G ;
Williamson, J ;
Wright, NA .
NATURE, 2000, 406 (6793) :257-257
[4]   Stem cells in the skin: waste not, Wnt not [J].
Alonso, L ;
Fuchs, E .
GENES & DEVELOPMENT, 2003, 17 (10) :1189-1200
[5]  
Becker RO, 2002, NEUROREHABILITATION, V17, P23
[6]   Adult cardiac stem cells are multipotent and support myocardial regeneration [J].
Beltrami, AP ;
Barlucchi, L ;
Torella, D ;
Baker, M ;
Limana, F ;
Chimenti, S ;
Kasahara, H ;
Rota, M ;
Musso, E ;
Urbanek, K ;
Leri, A ;
Kajstura, J ;
Nadal-Ginard, B ;
Anversa, P .
CELL, 2003, 114 (06) :763-776
[7]   Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice [J].
Bittner, RE ;
Schöfer, C ;
Weipoltshammer, K ;
Ivanova, S ;
Streubel, B ;
Hauser, E ;
Freilinger, M ;
Höger, H ;
Elbe-Bürger, A ;
Wachtler, F .
ANATOMY AND EMBRYOLOGY, 1999, 199 (05) :391-396
[8]   Clonal analysis of mouse intestinal epithelial progenitors [J].
Bjerknes, M ;
Cheng, H .
GASTROENTEROLOGY, 1999, 116 (01) :7-14
[9]   Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo [J].
Bjornson, CRR ;
Rietze, RL ;
Reynolds, BA ;
Magli, MC ;
Vescovi, AL .
SCIENCE, 1999, 283 (5401) :534-537
[10]   The evolving concept of a stem cell: Entity or function? [J].
Blau, HM ;
Brazelton, TR ;
Weimann, JM .
CELL, 2001, 105 (07) :829-841