Nonperturbative evolution equation for quantum gravity

被引:819
作者
Reuter, M [1 ]
机构
[1] DESY, Deutsch Elektronen Synchrotron, D-22603 Hamburg, Germany
来源
PHYSICAL REVIEW D | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevD.57.971
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A scale-dependent effective action for gravity is introduced and an exact nonperturbative evolution equation is derived which governs its renormalization group flow. It is invariant under general coordinate transformations and satisfies modified Becchi-Rouet-Stora Ward identities. The evolution equation is solved for a simple truncation of the space of actions. In 2+epsilon dimensions, nonperturbative corrections to the beta function of Newton's constant are derived and its dependence on the cosmological constant is investigated. In 4 dimensions, Einstein gravity is found to be "antiscreening;" i.e., Newton's constant increases at large distances.
引用
收藏
页码:971 / 985
页数:15
相关论文
共 90 条
  • [31] GUTS IN CURVED SPACETIME - RUNNING GRAVITATIONAL CONSTANTS, NEWTONIAN POTENTIAL, AND THE QUANTUM-CORRECTED GRAVITATIONAL EQUATIONS
    ELIZALDE, E
    LOUSTO, CO
    ODINTSOV, SD
    ROMEO, A
    [J]. PHYSICAL REVIEW D, 1995, 52 (04): : 2202 - 2213
  • [32] FLOW EQUATIONS AND BRS INVARIANCE FOR YANG-MILLS THEORIES
    ELLWANGER, U
    [J]. PHYSICS LETTERS B, 1994, 335 (3-4) : 364 - 370
  • [33] Flow equations for the relevant part of the pure Yang-Mills action
    Ellwanger, U
    Hirsch, M
    Weber, A
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 69 (04): : 687 - 697
  • [34] FLOW EQUATIONS FOR THE HIGGS TOP SYSTEM
    ELLWANGER, U
    VERGARA, L
    [J]. NUCLEAR PHYSICS B, 1993, 398 (01) : 52 - 68
  • [35] COLLECTIVE FIELDS AND FLOW EQUATIONS
    ELLWANGER, U
    [J]. ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 58 (04): : 619 - 627
  • [36] Feynman R P, 1963, ACTA PHYS POL, V24, P697
  • [37] AVERAGE EFFECTIVE POTENTIAL FOR THE CONFORMAL FACTOR
    FLOREANINI, R
    PERCACCI, R
    [J]. NUCLEAR PHYSICS B, 1995, 436 (1-2) : 141 - 160
  • [38] QUANTUM GRAVITY NEAR 2 DIMENSIONS
    GASTMANS, R
    KALLOSH, R
    TRUFFIN, C
    [J]. NUCLEAR PHYSICS B, 1978, 133 (03) : 417 - 434
  • [39] THE DARK MATTER PROBLEM AND QUANTUM-GRAVITY
    GOLDMAN, T
    PEREZMERCADER, J
    COOPER, F
    NIETO, MM
    [J]. PHYSICS LETTERS B, 1992, 281 (3-4) : 219 - 224
  • [40] KOSTERLITZ-THOULESS PHASE-TRANSITION IN THE 2-DIMENSIONAL LINEAR SIGMA-MODEL
    GRATER, M
    WETTERICH, C
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (03) : 378 - 381