Plebanski theory and covariant canonical formulation

被引:27
作者
Alexandrov, S. [1 ]
Buffenoir, E. [1 ]
Roche, Ph [1 ]
机构
[1] Univ Montpellier 2, Lab Phys Theor & Astroparticules, F-34095 Montpellier 05, France
关键词
D O I
10.1088/0264-9381/24/11/003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We establish an equivalence between the Hamiltonian formulation of the Plebanski action for general relativity and the covariant canonical formulation of the Hilbert-Palatini action. This is done by comparing the symplectic structures of the two theories through the computation of Dirac brackets. We also construct a shifted connection with simplified Dirac brackets, playing an important role in the covariant loop quantization programme, in the Plebanski framework. Implications for spin foam models are also discussed.
引用
收藏
页码:2809 / 2824
页数:16
相关论文
共 24 条
[1]   SO(4, C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter [J].
Alexandrov, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (20) :4255-4268
[2]   Timelike surfaces in Lorentz covariant loop gravity and spin foam models [J].
Alexandrov, S ;
Kádár, Z .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3491-3509
[3]   SU(2) loop quantum gravity seen from covariant theory -: art. no. 044009 [J].
Alexandrov, S ;
Livine, ER .
PHYSICAL REVIEW D, 2003, 67 (04)
[4]   Choice of connection in loop quantum gravity [J].
Alexandrov, S .
PHYSICAL REVIEW D, 2002, 65 (02)
[5]   Area spectrum in Lorentz covariant loop gravity [J].
Alexandrov, S ;
Vassilevich, D .
PHYSICAL REVIEW D, 2001, 64 (04)
[6]  
ALEXANDROV S, 2000, INT J MOD PHYS A, V15, P4681
[7]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[8]   Relativistic spin networks and quantum gravity [J].
Barrett, JW ;
Crane, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3296-3302
[9]   A Lorentzian signature model for quantum general relativity [J].
Barrett, JW ;
Crane, L .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (16) :3101-3118
[10]   Hamiltonian analysis of Plebanski theory [J].
Buffenoir, E ;
Henneaux, M ;
Noui, K ;
Roche, P .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (22) :5203-5220