A new data mining approach for profiling and categorizing kinetic patterns of metabolic biomarkers after myocardial injury

被引:19
作者
Baumgartner, Christian [1 ]
Lewis, Gregory D. [2 ,4 ,5 ]
Netzer, Michael [1 ]
Pfeifer, Bernhard [1 ]
Gerszten, Robert E. [2 ,3 ,4 ,5 ]
机构
[1] Univ Hlth Sci Med Informat & Technol UMIT, Inst Elect Elect & Bioengn, Res Grp Clin Bioinformat, A-6060 Hall In Tirol, Austria
[2] Massachusetts Gen Hosp, Div Cardiol, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Ctr Immunol & Inflammatory Dis, Boston, MA 02114 USA
[4] Harvard Univ, Sch Med, Donald W Reynolds Cardiovasc Clin Res Ctr Atheros, Boston, MA USA
[5] Broad Inst MIT & Harvard, Cambridge, MA USA
关键词
SELECTION TECHNIQUES; MASS-SPECTROMETRY; DISCOVERY; HYPOXANTHINE; ALGORITHM; XANTHINE; INOSINE; MARKERS; SEARCH;
D O I
10.1093/bioinformatics/btq254
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The discovery of new and unexpected biomarkers in cardiovascular disease is a highly data-driven process that requires the complementary power of modern metabolite profiling technologies, bioinformatics and biostatistics. Clinical biomarkers of early myocardial injury are lacking. A prospective biomarker cohort study was carried out to identify, categorize and profile kinetic patterns of early metabolic biomarkers of planned myocardial infarction (PMI) and spontaneous (SMI) myocardial infarction. We applied a targeted mass spectrometry (MS)-based metabolite profiling platform to serial blood samples drawn from carefully phenotyped patients undergoing alcohol septal ablation for hypertrophic obstructive cardiomyopathy serving as a human model of PMI. Patients with SMI and patients undergoing catheterization without induction of myocardial infarction served as positive and negative controls to assess generalizability of markers identified in PMI. Results: To identify metabolites of high predictive value in tandem mass spectrometry data, we introduced a new feature selection method for the categorization of metabolic signatures into three classes of weak, moderate and strong predictors, which can be easily applied to both paired and unpaired samples. Our paradigm outperformed standard null-hypothesis significance testing and other popular methods for feature selection in terms of the area under the receiver operating curve and the product of sensitivity and specificity. Our results emphasize that this new method was able to identify, classify and validate alterations of levels in multiple metabolites participating in pathways associated with myocardial injury as early as 10 min after PMI.
引用
收藏
页码:1745 / 1751
页数:7
相关论文
共 30 条
[1]  
Ackermann BL, 2006, CURR DRUG METAB, V7, P525
[2]  
[Anonymous], SUCCESSES NEW DIRECT
[3]   Cardiac outflow of amino acids and purines during myocardial ischemia and reperfusion [J].
Bäckström, T ;
Goiny, M ;
Lockowandt, U ;
Liska, J ;
Franco-Cereceda, A .
JOURNAL OF APPLIED PHYSIOLOGY, 2003, 94 (03) :1122-1128
[4]   Biomarker discovery, disease classification, and similarity query processing on high-throughput MS/MS data of inborn errors of metabolism [J].
Baumgartner, C ;
Baumgartner, D .
JOURNAL OF BIOMOLECULAR SCREENING, 2006, 11 (01) :90-99
[5]  
Christianini N., 2000, INTRO SUPPORT VECTOR, P189
[6]  
Collinson Paul O, 2007, Heart Lung Circ, V16 Suppl 3, pS71, DOI 10.1016/j.hlc.2007.05.006
[7]   Mass spectrometry-based metabolomics [J].
Dettmer, Katja ;
Aronov, Pavel A. ;
Hammock, Bruce D. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (01) :51-78
[8]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[9]   The search for new cardiovascular biomarkers [J].
Gerszten, Robert E. ;
Wang, Thomas J. .
NATURE, 2008, 451 (7181) :949-952
[10]   INOSINE - A PROTECTIVE AGENT IN AN ORGAN-CULTURE MODEL OF MYOCARDIAL ISCHEMIA [J].
GOLDHABER, SZ ;
POHOST, GM ;
KLONER, RA ;
ANDREWS, E ;
NEWELL, JB ;
INGWALL, JS .
CIRCULATION RESEARCH, 1982, 51 (02) :181-188