Modeling toxicity by using supervised Kohonen Neural Networks

被引:38
作者
Mazzatorta, P
Vracko, M
Jezierska, A
Benfenati, E
机构
[1] Ist Ric Farmacol Mario Negri, I-20157 Milan, Italy
[2] Natl Inst Chem, Ljubljana 1001, Slovenia
[3] Univ Wroclaw, Fac Chem, PL-50385 Wroclaw, Poland
来源
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES | 2003年 / 43卷 / 02期
关键词
D O I
10.1021/ci0256182
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Counterprogation neural network is shown to be a powerful and suitable tool for the investigation of toxicity. This study mined a data set of 568 chemicals. Two hundred eighty-two objects were used as the training set and 286 as the test set. The final model developed presents high performances on the data set R-2 = 0.83 (R-2 = 0.97 on the training set, R-2 = 0.59 on the test set). This technique distinguishes itself also for the ability to give to the expert two-dimensional maps suitable for the study of the distribution/clustering of the data and the identification of outliers.
引用
收藏
页码:485 / 492
页数:8
相关论文
共 25 条
[1]   Computational predictive programs (expert systems) in toxicology [J].
Benfenati, E ;
Gini, G .
TOXICOLOGY, 1997, 119 (03) :213-225
[2]   QSAR IN TOXICOLOGY .1. PREDICTION OF AQUATIC TOXICITY [J].
CRONIN, MTD ;
DEARDEN, JC .
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1995, 14 (01) :1-7
[3]   QSAR IN TOXICOLOGY .2. PREDICTION OF ACUTE MAMMALIAN TOXICITY AND INTERSPECIES CORRELATIONS [J].
CRONIN, MTD ;
DEARDEN, JC .
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1995, 14 (02) :117-120
[4]   QSAR in toxicology .3. Prediction of chronic toxicities [J].
Cronin, MTD ;
Dearden, JC .
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1995, 14 (04) :329-334
[5]   QSAR in toxicology .4. Prediction of non-lethal mammalian toxicological endpoints, and expert systems for toxicity prediction [J].
Cronin, MTD ;
Dearden, JC .
QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS, 1995, 14 (06) :518-523
[6]  
Dayhoff J., 1990, NEURAL NETWORK ARCHI, P192
[7]  
*ECOTOX, 2000, ECOTOX DAT SYST COD
[8]  
*ECOTOX, 2000, ECOTOX DAT SYST DAT
[9]  
*ECOTOX, 2000, ECOTOX DAT SYST US G
[10]   Predictive carcinogenicity: A model for aromatic compounds, with nitrogen-containing substituents, based on molecular descriptors using an artificial neural network [J].
Gini, G ;
Lorenzini, M ;
Benfenati, E ;
Grasso, P ;
Bruschi, M .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (06) :1076-1080