Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain

被引:47
作者
Csanády, L
Chan, KW
Nairn, AC
Gadsby, DC
机构
[1] Rockefeller Univ, Lab Cardiac Membrane Physiol, New York, NY 10021 USA
[2] Semmelweis Univ, Dept Biochem Med, H-1088 Budapest, Hungary
[3] Case Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH 44106 USA
[4] Rockefeller Univ, Mol & Cellular Neurosci Lab, New York, NY 10021 USA
关键词
ABC transporters; crystal structure; chloride ion-channel gating phosphorylation; domain boundaries;
D O I
10.1085/jgp.200409174
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The cystic fibrosis transmembrane conductance regulator (CFTR), encoded by the gene mutated in cystic fibrosis patients, belongs to the family of ATP-binding cassette (ABC) proteins, but, unlike other members, functions as a chloride channel. CFTR is activated by protein kinase A (PKA)-mediated phosphorylation of multiple sites in its regulatory domain, and gated by binding and hydrolysis of ATP at its two nucleotide binding domains (NBD1, NBD2). The recent crystal structure of NBD1 from mouse CFTR (Lewis, H.A., S.G. Buchanan, S.K. Burley K. Conners, M. Dickey, M. Dorwart, R. Fowler, X. Gao, W.B. Guggino, W.A. Hendrickson, et al. 2004. EMBO J. 23: 282-293) identified two regions absent from structures of all other NBDs determined so far, a "regulatory insertion" (residues 404-435) and a "regulatory extension" (residues 639-670), both positioned to impede formation of the putative NBD1-NBD2 dimer anticipated to occur during channel gating; as both segments appeared highly mobile and both contained consensus PKA sites (serine 422, and serines 660 and 670, respectively), it was suggested that, their phosphorylation-linked conformational changes might underlie CFTR channel regulation. To test that Suggestion, we coexpressed in Xenopus oocytes CFTR residues 1-414 with residues 433-1480, or residues 1-633 with 668-1480, to yield split CFTR channels (called 414+433 and 633+668) that lack most of the insertion, or extension, respectively In excised patches, regulation of the resulting CFTR channels by PKA and by ATP was largely normal. Both 414+433 channels and 633+668 channels, as well as 633(S422A)+668 channels (lacking both the extension and the sole PKA consensus site in the insertion), were all shut during exposure to MgATP before addition of PKA, but activated like wild type (WT) upon phosphorylation; this indicates that inhibitory regulation of nonphosphorylated ANT channels depends upon neither segment. Detailed kinetic analysis of 414+433 channels revealed intact ATP dependence of single-channel gating kinetics, but slightly shortened open bursts and faster closing from the locked-open state (elicited by ATP plus pyrophosphate or ATP plus AMPPNP). In contrast, 633+668 channel function was indistinguishable from WT at both macroscopic and microscopic levels. We conclude that neither nonconserved segment is an essential element of PKA- or nucleotide-dependent regulation.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 43 条
[1]   The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover [J].
Aleksandrov, L ;
Aleksandrov, AA ;
Chang, XB ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15419-15425
[2]   Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator [J].
Aleksandrov, L ;
Mengos, A ;
Chang, XB ;
Aleksandrov, A ;
Riordan, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12918-12923
[3]   REGULATION BY ATP AND ADP OF CFTR CHLORIDE CHANNELS THAT CONTAIN MUTANT NUCLEOTIDE-BINDING DOMAINS [J].
ANDERSON, MP ;
WELSH, MJ .
SCIENCE, 1992, 257 (5077) :1701-1704
[4]   NUCLEOSIDE TRIPHOSPHATES ARE REQUIRED TO OPEN THE CFTR CHLORIDE CHANNEL [J].
ANDERSON, MP ;
BERGER, HA ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
CELL, 1991, 67 (04) :775-784
[5]  
Armstrong SR, 1998, BIOPHYS J, V74, pA338
[6]   Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating [J].
Basso, C ;
Vergani, P ;
Nairn, AC ;
Gadsby, DC .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (03) :333-348
[7]   Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH2-terminal nucleotide binding domain [J].
Chan, KM ;
Csanády, L ;
Seto-Young, D ;
Nairn, AC ;
Gadsby, DC .
JOURNAL OF GENERAL PHYSIOLOGY, 2000, 116 (02) :163-180
[8]  
CHANG XB, 1993, J BIOL CHEM, V268, P11304
[9]   A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle [J].
Chen, J ;
Lu, G ;
Lin, J ;
Davidson, AL ;
Quiocho, FA .
MOLECULAR CELL, 2003, 12 (03) :651-661
[10]   Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms [J].
Csanády, L .
BIOPHYSICAL JOURNAL, 2000, 78 (02) :785-799