Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus

被引:147
作者
Lavillette, Dirnitri
Pecheur, Eve-Isabelle
Donot, Peggy
Fresquet, Judith
Molle, Jennifer
Corbau, Romuald
Dreux, Marlene
Penin, Francois
Cosset, Francois-Loic
机构
[1] Ecole Normale Super Lyon, F-69007 Lyon, France
[2] Univ Lyon 1, IFR 128, F-69007 Lyon, France
[3] INSERM U758, F-69007 Lyon, France
[4] Univ Lyon 1, CNRS, IBCP, UMR 5086, Lyon, France
[5] Pfizer Global Res & Dev, Sandwich, Kent, England
关键词
D O I
10.1128/JVI.02642-06
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Infection of eukaryotic cells by enveloped viruses requires the merging of viral and cellular membranes. Highly specific viral surface glycoproteins, named fusion proteins, catalyze this reaction by overcoming inherent energy barriers. Hepatitis C virus (HCV) is an enveloped virus that belongs to the genus Hepacivirus of the family Flaviviridae. Little is known about the molecular events that mediate cell entry and membrane fusion for HCV, although significant progress has been made due to recent developments in infection assays. Here, using infectious HCV pseudoparticles (HCVpp), we investigated the molecular basis of HCV membrane fusion. By searching for classical features of fusion peptides through the alignment of sequences from various HCV genotypes, we identified six regions of HCV El and E2 glycoproteins that present such characteristics. We introduced conserved and nonconserved amino acid substitutions in these regions and analyzed the phenotype of HCVpp generated with mutant E1E2 glycoproteins. This was achieved by (i) quantifying the infectivity of the pseudoparticles, (ii) studying the incorporation of E1E2 and their capacity to mediate receptor binding, and (iii) determining their fusion capacity in cell-cell and liposome/HCVpp fusion assays. We propose that at least three of these regions (i.e., at positions 270 to 284, 416 to 430, and 600 to 620) play a role in the membrane fusion process. These regions may contribute to the merging of viral and cellular membranes either by interacting directly with lipid membranes or by assisting the fusion process through their involvement in the conformational changes of the E1E2 complex at low pH.
引用
收藏
页码:8752 / 8765
页数:14
相关论文
共 66 条
[1]   Mutational evidence for an internal fusion peptide in flavivirus envelope protein E [J].
Allison, SL ;
Schalich, J ;
Stiasny, K ;
Mandl, CW ;
Heinz, FX .
JOURNAL OF VIROLOGY, 2001, 75 (09) :4268-4275
[2]  
[Anonymous], FIELDS VIROLOGY
[3]   Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction [J].
Barth, Heidi ;
Schnober, Eva K. ;
Zhang, Fuming ;
Linhardt, Robert J. ;
Depla, Erik ;
Boson, Bertrand ;
Cosset, Francois-Loic ;
Patel, Arvind H. ;
Blum, Hubert E. ;
Baumert, Thomas F. .
JOURNAL OF VIROLOGY, 2006, 80 (21) :10579-10590
[4]   Hepatitis C virus entry: Molecular biology and clinical implications [J].
Barth, Heidi ;
Liang, T. Jake ;
Baumert, Thomas F. .
HEPATOLOGY, 2006, 44 (03) :527-535
[5]   Cell entry of hepatitis C virus [J].
Bartosch, B ;
Cosset, FL .
VIROLOGY, 2006, 348 (01) :1-12
[6]   An interplay between hypervariable region 1 of the Hepatitis C Virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies [J].
Bartosch, B ;
Verney, G ;
Dreux, M ;
Donot, P ;
Morice, Y ;
Penin, F ;
Pawlotsky, JM ;
Lavillette, D ;
Cosset, FL .
JOURNAL OF VIROLOGY, 2005, 79 (13) :8217-8229
[7]   Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor [J].
Bartosch, B ;
Vitelli, A ;
Granier, C ;
Goujon, C ;
Dubuisson, J ;
Pascale, S ;
Scarselli, E ;
Cortese, R ;
Nicosia, A ;
Cosset, FL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (43) :41624-41630
[8]   Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes [J].
Bartosch, B ;
Dubuisson, J ;
Cosset, FL .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 197 (05) :633-642
[9]   Hepatitis C virus entry depends on clathrin-mediated endocytosis [J].
Blanchard, Emmanuelle ;
Belouzard, Sandrine ;
Goueslain, Lucie ;
Wakita, Takaji ;
Dubuisson, Jean ;
Wychowski, Czeslaw ;
Rouille, Yves .
JOURNAL OF VIROLOGY, 2006, 80 (14) :6964-6972
[10]   A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes [J].
Cavrois, M ;
de Noronha, C ;
Greene, WC .
NATURE BIOTECHNOLOGY, 2002, 20 (11) :1151-1154