Growth of multi-walled carbon nanotubes by injection CVD using cyclopentadienyliron dicarbonyl dimer and cyclooctatetraene iron tricarbonyl

被引:29
作者
Harris, JD [1 ]
Raffaelle, RP
Gennett, T
Landi, BJ
Hepp, AE
机构
[1] NASA, Glenn Res Ctr, Thin Film Technol Grp, Cleveland, OH 44135 USA
[2] NW Nazarene Univ, Dept Chem, Nampa, ID 83686 USA
[3] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA
[4] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA
[5] Rochester Inst Technol, Dept Chem, Rochester, NY 14623 USA
[6] Rochester Inst Technol, Nanopower Res Lab, Rochester, NY 14623 USA
来源
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY | 2005年 / 116卷 / 03期
关键词
carbon nanotubes; chemical vapor deposition; catalyst; TGA; Raman;
D O I
10.1016/j.mseb.2004.06.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Preferential oriented multi-walled carbon nanotubes were prepared by injection chemical vapor deposition (CVD) using either cyclopentadienyliron dicarbonyl dimer or cyclooctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth (i.e., MWNT orientation) of the nanotubes, as well as the amount of iron in the deposited material. As deposited, the multi-walled carbon nanotubes contained as little as 2.8 wt.% of iron. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and a preferred orientation. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 374
页数:6
相关论文
共 37 条
[1]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[2]   Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures [J].
Andrews, R ;
Jacques, D ;
Qian, D ;
Dickey, EC .
CARBON, 2001, 39 (11) :1681-1687
[3]   Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes [J].
Bandow, S ;
Asaka, S ;
Saito, Y ;
Rao, AM ;
Grigorian, L ;
Richter, E ;
Eklund, PC .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3779-3782
[4]   Ternary single-source precursors for polycrystalline thin-film solar cells [J].
Banger, KK ;
Hollingsworth, JA ;
Harris, JD ;
Cowen, J ;
Buhro, WE ;
Hepp, AF .
APPLIED ORGANOMETALLIC CHEMISTRY, 2002, 16 (11) :617-627
[5]   Facile modulation of single source precursors: the synthesis and characterization of single source precursors for deposition of ternary chalcopyrite materials [J].
Banger, KK ;
Harris, JD ;
Cowen, JE ;
Hepp, AF .
THIN SOLID FILMS, 2002, 403 :390-395
[6]   Synthesis and characterization of the first liquid single-source precursors for the deposition of ternary chalcopyrite (CuInS2) thin film materials [J].
Banger, KK ;
Cowen, J ;
Hepp, AF .
CHEMISTRY OF MATERIALS, 2001, 13 (11) :3827-+
[7]   An effective way to lower catalyst content in well-aligned carbon nanotube films [J].
Cao, AY ;
Ci, LJ ;
Wu, GW ;
Wei, BQ ;
Xu, CL ;
Liang, J ;
Wu, DH .
CARBON, 2001, 39 (01) :152-155
[8]   Pore structure of raw and purified HiPco single-walled carbon nanotubes [J].
Cinke, M ;
Li, J ;
Chen, B ;
Cassell, A ;
Delzeit, L ;
Han, J ;
Meyyappan, M .
CHEMICAL PHYSICS LETTERS, 2002, 365 (1-2) :69-74
[9]   Visible photoluminescence from ruthenium-doped multiwall carbon nanotubes [J].
Dickey, EC ;
Grimes, CA ;
Jain, MK ;
Ong, KG ;
Qian, D ;
Kichambare, PD ;
Andrews, R ;
Jacques, D .
APPLIED PHYSICS LETTERS, 2001, 79 (24) :4022-4024
[10]   Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes [J].
Endo, M ;
Kim, YA ;
Fukai, Y ;
Hayashi, T ;
Terrones, M ;
Terrones, H ;
Dresselhaus, MS .
APPLIED PHYSICS LETTERS, 2001, 79 (10) :1531-1533