State transitions and the continuum limit for a 2D interacting, self-propelled particle system

被引:205
作者
Chuang, Yao-Li [1 ]
D'Orsogna, Maria R.
Marthaler, Daniel
Bertozzi, Andrea L.
Chayes, Lincoln S.
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Duke Univ, Dept Phys, Durham, NC 27706 USA
[3] Northrop Grumman Corp, ACS UMS, Rancho Bernardo, CA USA
基金
美国国家科学基金会;
关键词
swarming; flocking; self-propelling particles; self-organization;
D O I
10.1016/j.physd.2007.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of swarming problems wherein particles evolve dynamically via pairwise interaction potentials and a velocity selection mechanism. We find that the swarming system undergoes various changes of state as a function of the self-propulsion and interaction potential parameters. In this paper, we utilize a procedure which connects a class of individual -based models to their continuum formulations and determine criteria for the validity of the latter. H-stability of the interaction potential plays a fundamental role in determining both the validity of the continuum approximation and the nature of the aggregation state transitions. We perform a linear stability analysis of the continuum model and compare the results to the simulations of the individual -based one. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 49 条
[21]  
Koch AL, 1998, BIOESSAYS, V20, P1030, DOI 10.1002/(SICI)1521-1878(199812)20:12<1030::AID-BIES9>3.0.CO
[22]  
2-7
[23]  
Lambert J.D., 1991, NUMERICAL METHODS OR
[24]  
Leonard NE, 2001, IEEE DECIS CONTR P, P2968, DOI 10.1109/CDC.2001.980728
[25]  
LeVeque R. J., 1992, NUMERICAL METHODS CO
[26]  
Levine H, 2001, PHYS REV E, V63, DOI 10.1103/PhysRevE.63.017101
[27]   Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology [J].
Liu, Y ;
Passino, KM ;
Polycarpou, MM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (01) :76-95
[28]   Noise-induced breakdown of coherent collective motion in swarms [J].
Mikhailov, AS ;
Zanette, DH .
PHYSICAL REVIEW E, 1999, 60 (04) :4571-4575
[29]   Spatio-angular order in populations of self-aligning objects: Formation of oriented patches [J].
Mogilner, A ;
EdelsteinKeshet, L .
PHYSICA D, 1996, 89 (3-4) :346-367
[30]   A non-local model for a swarm [J].
Mogilner, A ;
Edelstein-Keshet, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (06) :534-570