Potential Therapeutic Benefits of Strategies Directed to Mitochondria

被引:143
作者
Camara, Amadou K. S. [1 ]
Lesnefsky, Edward J. [5 ,6 ,7 ]
Stowe, David F. [1 ,2 ,3 ,4 ]
机构
[1] Med Coll Wisconsin, Dept Anesthesiol, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Dept Physiol, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, Cardiovasc Res Ctr, Milwaukee, WI 53226 USA
[4] Vet Affairs Med Ctr, Res Serv, Milwaukee, WI USA
[5] Hunter Holmes McGuire Vet Affairs Med Ctr, Med Serv, Richmond, VA USA
[6] Virginia Commonwealth Univ, Dept Med, Div Cardiol, Richmond, VA 23298 USA
[7] Virginia Commonwealth Univ, Dept Biochem, Div Cardiol, Richmond, VA USA
基金
美国国家卫生研究院;
关键词
PERMEABILITY TRANSITION PORE; MANGANESE SUPEROXIDE-DISMUTASE; ISCHEMIA-REPERFUSION INJURY; AMYLOID-BETA-PEPTIDE; OXIDOREDUCTASE COMPLEX-I; TYPE-2; DIABETES-MELLITUS; DEPENDENT ANION CHANNEL; NITRIC-OXIDE SYNTHASE; KINASE-C-EPSILON; K-ATP CHANNELS;
D O I
10.1089/ars.2009.2788
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279-347.
引用
收藏
页码:279 / 347
页数:69
相关论文
共 658 条
  • [11] ALDAKKAK MH, 2006, FASEB J, V20, pA384
  • [12] Enhanced Na+/H+ exchange during ischemia and reperfusion impairs mitochondrial bioenergetics and myocardial function
    Aldakkak, Mohammed
    Stowe, David F.
    Heisner, James S.
    Spence, Marisha
    Camara, Amadou K. S.
    [J]. JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2008, 52 (03) : 236 - 244
  • [13] National Trends in Treatment of Type 2 Diabetes Mellitus, 1994-2007
    Alexander, G. Caleb
    Sehgal, Niraj L.
    Moloney, Rachael M.
    Stafford, Randall S.
    [J]. ARCHIVES OF INTERNAL MEDICINE, 2008, 168 (19) : 2088 - 2094
  • [14] AMBROSIO G, 1993, J BIOL CHEM, V268, P18532
  • [15] Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
    Anderson, Ethan J.
    Lustig, Mary E.
    Boyle, Kristen E.
    Woodlief, Tracey L.
    Kane, Daniel A.
    Lin, Chien-Te
    Price, Jesse W., III
    Kang, Li
    Rabinovitch, Peter S.
    Szeto, Hazel H.
    Houmard, Joseph A.
    Cortright, Ronald N.
    Wasserman, David H.
    Neufer, P. Darrell
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) : 573 - 581
  • [16] Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich's ataxia
    Anderson, Peter R.
    Kirby, Kim
    Orr, William C.
    Hilliker, Arthur J.
    Phillips, John P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (02) : 611 - 616
  • [17] RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila
    Anderson, PR
    Kirby, K
    Hilliker, AJ
    Phillips, JP
    [J]. HUMAN MOLECULAR GENETICS, 2005, 14 (22) : 3397 - 3405
  • [18] Transient and partial mitochondrial inhibition for the treatment of postresuscitation injury: Getting it just right
    Anderson, Travis C.
    Li, Chang-Qing
    Shao, Zuo-Hui
    Hoang, Truc
    Chan, Kim Chai
    Hamann, Kimm J.
    Becker, Lance B.
    Vanden Hoek, Terry L.
    [J]. CRITICAL CARE MEDICINE, 2006, 34 (12) : S474 - S482
  • [19] Role of the redox protein thioredoxin in cytoprotective mechanism evoked by (-)-deprenyl
    Andoh, T
    Chock, PB
    Murphy, DL
    Chiueh, CC
    [J]. MOLECULAR PHARMACOLOGY, 2005, 68 (05) : 1408 - 1414
  • [20] Mitochondrial metabolism of reactive oxygen species
    Andreyev, AI
    Kushnareva, YE
    Starkov, AA
    [J]. BIOCHEMISTRY-MOSCOW, 2005, 70 (02) : 200 - 214