The modified box-counting method: Analysis of some characteristic parameters

被引:114
作者
Buczkowski, S [1 ]
Kyriacos, S [1 ]
Nekka, F [1 ]
Cartilier, L [1 ]
机构
[1] Univ Montreal, Fac Pharm, Montreal, PQ H3C 3J7, Canada
关键词
fractal geometry; fractal dimension; box-counting method; image analysis;
D O I
10.1016/S0031-3203(97)00054-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the most popular ways of estimating fractal dimension (DS) is the box-counting method (BCM). The major problem with this method is that it leads to results with a very high percentage of error. The modified box-counting method (MBCM) was developed as a methodic procedure to set sequence and range. The procedure eliminates two problems of the computerized BCM, the border effect and noninteger values of E. The MBCM is a new, powerful tool, very simple to use, allowing accurate estimation of Df. (C) 1998 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 27 条
[1]  
Avnir D., 1989, The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers
[2]  
Barnsley M. F., 2014, Fractals Everywhere
[3]  
Barnsley M.F., 1988, The Science of Fractal Images
[4]   EFFICIENT BOX-COUNTING DETERMINATION OF GENERALIZED FRACTAL DIMENSIONS [J].
BLOCK, A ;
VONBLOH, W ;
SCHELLNHUBER, HJ .
PHYSICAL REVIEW A, 1990, 42 (04) :1869-1874
[5]   ON THE CALCULATION OF FRACTAL FEATURES FROM IMAGES [J].
CHEN, SS ;
KELLER, JM ;
CROWNOVER, RM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (10) :1087-1090
[6]   EVALUATING THE FRACTAL DIMENSION OF PROFILES [J].
DUBUC, B ;
QUINIOU, JF ;
ROQUESCARMES, C ;
TRICOT, C ;
ZUCKER, SW .
PHYSICAL REVIEW A, 1989, 39 (03) :1500-1512
[7]   GENERAL INTERPOLATION SCHEMES FOR THE GENERATION OF IRREGULAR SURFACES [J].
DUBUC, S ;
NEKKA, F .
CONSTRUCTIVE APPROXIMATION, 1993, 9 (04) :525-542
[8]  
FALCONER K, 1990, FRACTAL GEOMETRIES T
[9]  
Feder J., 1988, FRACTALS
[10]   COMPUTER RENDERING OF STOCHASTIC-MODELS [J].
FOURNIER, A ;
FUSSELL, D ;
CARPENTER, L .
COMMUNICATIONS OF THE ACM, 1982, 25 (06) :371-384