Test-case generator for nonlinear continuous parameter optimization techniques

被引:59
作者
Michalewicz, Z [1 ]
Deb, K
Schmidt, M
Stidsen, T
机构
[1] Univ N Carolina, Dept Comp Sci, Charlotte, NC 28223 USA
[2] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
[3] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Pin, India
[4] Aarhus Univ, Dept Comp Sci, DK-8000 Aarhus C, Denmark
[5] Tech Univ Denmark, Inst Math Modeling, DK-2800 Lyngby, Denmark
关键词
constrained optimization; evolutionary computation; nonlinear programming; test-case generator;
D O I
10.1109/4235.873232
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The experimental results reported in many papers suggest that making an appropriate a priori choice of an evolutionary method for a nonlinear parameter optimization problem remains an open question. It seems that the most promising approach at this stage of research is experimental, involving the design of a scalable test suite of constrained optimization problems, in which many features could be tuned easily. It would then be possible to evaluate the merits and drawbacks of the available methods, as well as to test new methods efficiently. In this paper, we propose such a test-case generator for constrained parameter optimization techniques. This generator is capable of creating various test problems with different characteristics including: 1) problems with different relative sizes of the feasible region in the search space; 2) problems with different numbers and types of constraints; 3) problems with convex or nonconvex evaluation functions, possibly with multiple optima; and 4) problems with highly nonconvex constraints consisting of (possibly) disjoint regions. Such a test-case generator is very useful for analyzing and comparing different constraint-handling techniques.
引用
收藏
页码:197 / 215
页数:19
相关论文
共 68 条
  • [11] Davis L., 1997, COMMUNICATION
  • [12] DEB K, IN PRESS COMPUT METH
  • [13] DEJONG K, 1975, THESIS U MICHIGAN AN, V36, P514
  • [14] Eiben AE, 1994, LECT NOTES COMPUT SC, V866, P78
  • [15] Self-adaptivity for constraint satisfaction: Learning penalty functions
    Eiben, AE
    Ruttkay, Z
    [J]. 1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 258 - 261
  • [16] ESHELMAN LJ, 1993, FOUNDATIONS OF GENETIC ALGORITHMS 2, P187
  • [17] FLOUDAS C, 1987, COLLECTION TEST PROB, V455
  • [18] Gregory J., 1995, NONLINEAR PROGRAMMIN
  • [19] Hadj-Alouane A.B., 1992, 9250 TR U MICH DEP I
  • [20] HIMMELBLAU D, 1992, APPL NONLINEAR PROGR