Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles

被引:136
作者
Hyun, Youbong [1 ]
Kim, Jungeun [2 ]
Cho, Seung Woo [2 ,3 ]
Choi, Yeonhee [4 ]
Kim, Jin-Soo [2 ,3 ]
Coupland, George [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, D-50829 Cologne, Germany
[2] Seoul Natl Univ, Natl Creat Res Initiat Ctr Genome Engn, Seoul 151747, South Korea
[3] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea
[4] Seoul Natl Univ, Dept Biol Sci, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
RGEN; CRISPR/Cas system; Site-directed mutagenesis; ICU2; RNA-GUIDED ENDONUCLEASE; DNA-POLYMERASE-ALPHA; CATALYTIC SUBUNIT; HUMAN-CELLS; CAS SYSTEM; GENOME; GENES; TRANSFORMATION; NUCLEASES; MULTIPLEX;
D O I
10.1007/s00425-014-2180-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Dividing tissue-targeted site-directed mutagenesis using RGEN of CRISPR/Cas system produces heritable mutations in Arabidopsis thaliana. Site-directed genome engineering in higher plants has great potential for basic research and molecular breeding. Here, we describe a method for site-directed mutagenesis of the Arabidopsis nuclear genome that efficiently generates heritable mutations using the RNA-guided endonuclease (RGEN) derived from bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 (CRISPR associated) protein system. To induce mutagenesis in proliferating tissues during embryogenesis and throughout the plant life cycle, the single guide RNA (sgRNA) and Cas9 DNA endonuclease were expressed from the U6 snRNA and INCURVATA2 promoters, respectively. After Agrobacterium-mediated introduction of T-DNAs encoding RGENs that targets FLOWERING LOCUS T (FT) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 4 genes, somatic mutagenesis at the targeted loci was observed in T1 transformants. In the results of FT-RGEN, T1 plants often showed late flowering indicative of the presence of large somatic sectors in which the FT gene is mutated on both chromosomes. DNA sequencing analysis estimated that about 90 % of independent chromosomal DNA fragments carried mutations in the analyzed tissue of a T1 plant showing late flowering. The most frequently detected somatic polymorphism showed a high rate of inheritance in T2 plants, and inheritance of less frequent polymorphisms was also observed. As a result, late-flowering plants homozygous for novel, heritable null alleles of FT including a 1 bp insertion or short deletions were recovered in the following T2 and T3 generations. Our results demonstrate that dividing tissue-targeted mutagenesis using RGEN provides an efficient heritable genome engineering method in A. thaliana.
引用
收藏
页码:271 / 284
页数:14
相关论文
共 32 条
[1]   The genetic basis of flowering responses to seasonal cues [J].
Andres, Fernando ;
Coupland, George .
NATURE REVIEWS GENETICS, 2012, 13 (09) :627-639
[2]   INCURVATA2 encodes the catalytic subunit of DNA polymerase α and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana [J].
Barrero, Jose Maria ;
Gonzalez-Bayon, Rebeca ;
del Pozo, Juan Carlos ;
Ponce, Maria Rosa ;
Micol, Jose Luis .
PLANT CELL, 2007, 19 (09) :2822-2838
[3]   CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation [J].
Bhaya, Devaki ;
Davison, Michelle ;
Barrangou, Rodolphe .
ANNUAL REVIEW OF GENETICS, VOL 45, 2011, 45 :273-297
[4]   Heritable Gene Knockout in Caenorhabditis elegans by Direct Injection of Cas9-sgRNA Ribonucleoproteins [J].
Cho, Seung Woo ;
Lee, Jihyun ;
Carroll, Dana ;
Kim, Jin-Soo ;
Lee, Junho .
GENETICS, 2013, 195 (03) :1177-+
[5]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[6]   Targeted Mutagenesis of Arabidopsis thaliana Using Engineered TAL Effector Nucleases [J].
Christian, Michelle ;
Qi, Yiping ;
Zhang, Yong ;
Voytas, Daniel F. .
G3-GENES GENOMES GENETICS, 2013, 3 (10) :1697-1705
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[9]   Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis [J].
Feng, Zhengyan ;
Mao, Yanfei ;
Xu, Nanfei ;
Zhang, Botao ;
Wei, Pengliang ;
Yang, Dong-Lei ;
Wang, Zhen ;
Zhang, Zhengjing ;
Zheng, Rui ;
Yang, Lan ;
Zeng, Liang ;
Liu, Xiaodong ;
Zhu, Jian-Kang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (12) :4632-4637
[10]   Efficient genome editing in plants using a CRISPR/Cas system [J].
Feng, Zhengyan ;
Zhang, Botao ;
Ding, Wona ;
Liu, Xiaodong ;
Yang, Dong-Lei ;
Wei, Pengliang ;
Cao, Fengqiu ;
Zhu, Shihua ;
Zhang, Feng ;
Mao, Yanfei ;
Zhu, Jian-Kang .
CELL RESEARCH, 2013, 23 (10) :1229-1232