Complex Langevin for semisimple compact connected Lie groups and U(1)

被引:5
作者
Gausterer, H [1 ]
Thaler, H [1 ]
机构
[1] Graz Univ, Inst Theoret Phys, A-8010 Graz, Austria
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 11期
关键词
D O I
10.1088/0305-4470/31/11/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several problems in quantum field theory like QCD at high densities lead to complex-valued actions S with S : G --> C, where G is some group. Under the assumption that the complex Langevin process converges to a weakly stationary process we discuss the conditions under which it correctly simulates expectation values defined by complex weights. For technical reasons the discussion is restricted to (ill) and semisimple compact connected Lie groups like SU(n).
引用
收藏
页码:2541 / 2549
页数:9
相关论文
共 20 条
[11]  
Hackenbroch W., 1994, MATH LEITFDEN
[12]   CONVERGENCE OF THE LANGEVIN SIMULATION FOR COMPLEX GAUSSIAN INTEGRALS [J].
HAYMAKER, RW ;
PENG, YC .
PHYSICAL REVIEW D, 1990, 41 (04) :1269-1275
[13]  
HEWITT E, 1970, ABSTR HARM AN, V2
[14]  
HILGERT J, 1991, GRUPPEN ALGEBREN
[15]  
Ikeda N., 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[16]  
Klauder J.R., 1983, RECENT DEV HIGH ENER, P351
[17]   A LANGEVIN APPROACH TO FERMION AND QUANTUM SPIN CORRELATION-FUNCTIONS [J].
KLAUDER, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (10) :L317-L319
[18]   SPECTRUM OF CERTAIN NON-SELF-ADJOINT OPERATORS AND SOLUTIONS OF LANGEVIN-EQUATIONS WITH COMPLEX DRIFT [J].
KLAUDER, JR ;
PETERSEN, WP .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (1-2) :53-72
[19]   THE CONVERGENCE OF COMPLEX LANGEVIN SIMULATIONS [J].
LEE, S .
NUCLEAR PHYSICS B, 1994, 413 (03) :827-848
[20]  
VARADARAJAN V, 1984, GROUPS ALGEBRAS REPR