Dynamics of spiral waves on unbounded domains using center-manifold reductions

被引:72
作者
Sandstede, B
Scheel, A
Wulff, C
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[3] WIAS, D-10117 Berlin, Germany
关键词
D O I
10.1006/jdeq.1997.3326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An equivariant center-manifold reduction near relative equilibria of G-equivariant semiflows on Banach spaces is presented. In contrast to previous results, the Lie group G is possibly non-compact. Moreover, it is not required that G induces a strongly continuous group action on the underlying function space. In fact, G may act discontinuously. The results are applied to bifurcations of stable patterns arising in reaction-diffusion systems on the plane or in three-space modeling chemical systems such as catalysis on platinum surfaces and Belousov-Zhabotinsky reactions. These systems are equivariant under the Euclidean symmetry group. Hopf bifurcations from rigidly-rotating spiral waves to meandering or drifting waves and from twisted scroll rings are investigated. (C) 1997 Academic Press.
引用
收藏
页码:122 / 149
页数:28
相关论文
共 21 条
[11]  
Kato T., 1976, Grundlehren der Mathematischen Wissenschaften, V132
[12]   BIFURCATIONS OF RELATIVE EQUILIBRIA [J].
KRUPA, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (06) :1453-1486
[13]  
Montgomery D., 1955, TOPOLOGICAL TRANSFOR
[14]   REACTION-DIFFUSION PATTERNS IN THE CATALYTIC COOXIDATION ON PT(110) - FRONT PROPAGATION AND SPIRAL WAVES [J].
NETTESHEIM, S ;
VONOERTZEN, A ;
ROTERMUND, HH ;
ERTL, G .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :9977-9985
[15]   DYNAMIC SIMULATIONS OF TWISTED SCROLL RINGS IN 3-DIMENSIONAL EXCITABLE MEDIA [J].
PANFILOV, AV ;
WINFREE, AT .
PHYSICA D, 1985, 17 (03) :323-330
[16]  
Pazy A., 1983, SEMIGROUPS LINEAR OP
[17]  
PLAPP BB, IN PRESS PHYSICA SCR
[18]  
Sandstede B, 1997, CR ACAD SCI I-MATH, V324, P153
[19]  
Shub M., 1987, GLOBAL STABILITY DYN, DOI DOI 10.1007/978-1-4757-1947-5
[20]  
Wiggins S, 1994, NORMALLY HYPERBOLIC