Statistical modeling and conceptualization of visual patterns

被引:69
作者
Zhu, SC
机构
[1] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
关键词
perceptual organization; descriptive models; generative models; causal Markov models; discriminative methods; minimax entropy learning; mixed Markov models;
D O I
10.1109/TPAMI.2003.1201820
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Natural images contain an overwhelming number of visual patterns generated by diverse stochastic processes. Defining and modeling these patterns is of fundamental importance for generic vision tasks, such as perceptual organization, segmentation, and recognition. The objective of this epistemological paper is to summarize various threads of research in the literature and to pursue a unified framework for conceptualization, modeling, learning, and computing visual patterns. This paper starts with reviewing four research streams: 1) the study of image statistics, 2) the analysis of image components, 3) the grouping of image elements, and 4) the modeling of visual patterns. The models from these research streams are then divided into four categories according to their semantic structures: 1) descriptive models, i.e., Markov random fields (MRF) or Gibbs, 2) variants of descriptive models (causal MRF and "pseudodescriptive" models), 3) generative models, and 4) discriminative models. The objectives, principles, theories, and typical models are reviewed in each category and the relationships between the four types of models are studied. Two central themes emerge from the relationship studies. 1) In representation, the integration of descriptive and generative models is the future direction for statistical modeling and should lead to richer and more advanced classes of vision models. 2) To make visual models computationally tractable, discriminative models are used as computational heuristics for inferring generative models. Thus, the roles of four types of models are clarified. The paper also addresses the issue of conceptualizing visual patterns and their components (vocabularies) from the perspective of statistical mechanics. Under this unified framework, a visual pattern is equalized to a statistical ensemble, and, furthermore, statistical models for various visual patterns form a "continuous" spectrum in the sense that they belong to a series of nested probability families in the space of attributed graphs.
引用
收藏
页码:691 / 712
页数:22
相关论文
共 103 条
[91]  
WU YN, 1999, P INT C COMP VIS
[92]  
WU YN, 2002, P EUR C COMP VIS
[93]  
YEDIDIA JS, 2000, TR200026 MITS EL RES
[94]   DEFORMABLE TEMPLATES FOR FACE RECOGNITION [J].
YUILLE, AL .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) :59-70
[95]   Order parameters for detecting target curves in images:: When does high level knowledge help? [J].
Yuille, AL ;
Coughlan, JM ;
Wu, Y ;
Zhu, SC .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2001, 41 (1-2) :9-33
[96]  
YUILLE AL, 2001, NEURAL COMPUTATION
[97]   Embedding Gestalt laws in Markov random fields [J].
Zhu, SC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (11) :1170-1187
[98]   Exploring texture ensembles by efficient Markov chain Monte Carlo - Toward a "trichromacy" theory of texture [J].
Zhu, SC ;
Liu, XW ;
Wu, YN .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (06) :554-569
[99]   Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling [J].
Zhu, SC ;
Wu, YN ;
Mumford, D .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 27 (02) :107-126
[100]  
Zhu SC, 1997, IEEE T PATTERN ANAL, V19, P1236, DOI 10.1109/34.632983