Statistical detection algorithms in fat-tailed hyperspectral background clutter

被引:8
作者
Bernhardt, M [1 ]
Oxford, WJ [1 ]
Clare, PE [1 ]
Wilkinson, VA [1 ]
Clarke, DG [1 ]
机构
[1] Waterfall Solut Ltd, Guildford, Surrey, England
来源
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING X | 2004年 / 5573卷
关键词
hyperspectral; clutter model; fat tails;
D O I
10.1117/12.565537
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper explores three related themes: the statistical nature of hyperspectral background clutter; why should it be like this; and how to exploit it in algorithms. We begin by reviewing the evidence for the non-Gaussian and in particular fat-tailed nature of hyperspectral background distributions. Following this we develop a simple statistical model that gives some insight into why the observed fat tails occur. We demonstrate that this model fits the background data for some hyperspectral data sets. Finally we make use of the model to develop hyperspectral detection algorithms and compare them to traditional algorithms on some real world data sets.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 8 条
  • [1] Automated Gaussian spectral clustering of hyperspectral data
    Beaven, SG
    Hazel, G
    Stocker, AD
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 254 - 266
  • [2] A new approach to anomaly detection in hyperspectral images
    Clare, P
    Bernhardt, M
    Oxford, W
    Murphy, S
    Godfree, P
    Wilkinson, V
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY IX, 2003, 5093 : 17 - 28
  • [3] SIGNIFICANCE OF K-DISTRIBUTIONS IN SCATTERING EXPERIMENTS
    JAKEMAN, E
    PUSEY, PN
    [J]. PHYSICAL REVIEW LETTERS, 1978, 40 (09) : 546 - 550
  • [4] Detection algorithms for hyperspectral Imaging applications
    Manolakis, D
    Shaw, G
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 29 - 43
  • [5] On the statistics of hyperspectral imaging data
    Manolakis, D
    Marden, D
    Kerekes, J
    Shaw, G
    [J]. ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL AND ULTRASPECTRAL IMAGERY VII, 2001, 4381 : 308 - 316
  • [6] MARDEN D, 2002, IMAGING SPECTROSCO 8, V4816
  • [7] ADAPTIVE MULTIPLE-BAND CFAR DETECTION OF AN OPTICAL-PATTERN WITH UNKNOWN SPECTRAL DISTRIBUTION
    REED, IS
    YU, XL
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (10): : 1760 - 1770
  • [8] The correlation properties of gamma and other non-Gaussian processes generated by memoryless nonlinear transformation
    Tough, RJA
    Ward, KD
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (23) : 3075 - 3084